Skip to main content
Log in

Flat-Probe Diagnostic Methods for Collisional Plasma Flowing from Technological Plasmatrons

  • EXPERIMENTAL MECHANICS, DIAGNOSTICS, AND TESTING
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

Based on computational and full-scale experiments, several algorithms have been developed for processing current–voltage curves obtained for flat wall and remote probes in the case of a weakly ionized low-temperature collisional plasma. The proposed diagnostic methods could be useful for specialists employing technological plasmatrons in various sectors of the national economy such as plasma chemistry, plasma-enhanced deposition, plasma processing of materials, gas-extraction and petroleum-production industries, in aviation and rocket engineering, and in other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ivanov, Yu.A., Lebedev, Yu.A., and Polak, L.S., Metody kontaktnoi diagnostiki v neravnovesnoi plazmokhimii (Contact Diagnostic Methods in Nonequilibrium Plasma Chemistry), Moscow: Nauka, 1981.

  2. Dostanko, A.P., Grushetskii, S.V., Kiselevskii, L.I., et al., Plazmennaya metallizatsiya v vakuume (Plasma Vacuum Metallization), Moscow: Nauka Tekhnika, 1983.

  3. Shalimov, M.P. and Panov, V.I., Svarka vchera, segodnya, zavtra (Welding: Yesterday, Today, Tomorrow), Zaparii, V.V., Ed., Yekaterinburg: UGTU-UPI, 2006.

    Google Scholar 

  4. Dement’ev, V.A., Sdobyrev, V.V., Ponomarev, V.A., et al., Plasma growth of TiB2, ZrB2, NbB2 single crystal, in Vysokochistye i monokristallicheskie materialy (High Purity and Single Crystal Materials), Moscow: Nauka, 1987, p. 71.

  5. Khusainov, R.R., The rationale for the combined enhanced oil recovery using surfactants and plasma-pulse technology, Cand. Sci. (Tech. Sci.) Dissertation, St. Petersburg: NMSU Gornyi, 2014.

  6. Khusainov, R.R., Molchanov, A.A., and Maksyutin, A.V., Results of plasma-pulse action application on the zhdanitsa oilfield, Geol., Geogr. Global. Energ., 2013, no. 2, p. 27.

  7. Kotel’nikov, V.A. and Kotel’nikov, M.V., Cylindrical-probe diagnostics of plasma flows effusing from technological plasmatrons, J. Mach. Manuf. Reliab., 2017, vol. 46, no. 2, pp. 169–173.

    Article  Google Scholar 

  8. Chung, P.M., Talbot, L., and Touryan, K.J., Electric Probes in Stationary and Flowing Plasmas, Berlin, Heidelberg: Springer, 1975.

    Book  Google Scholar 

  9. Muñoz-Cordovez, G., Veloso, F., Valenzuela-Villaseca, V., Vescovi, M., Useche, W., Wyndham, E., and Favre, M., Emission of fast ions from conical wire array Z-pinches studied at different background pressures, Phys. Plasmas, 2018, vol. 25, no. 10, p. 102101.

    Article  Google Scholar 

  10. Kotel’nikov, V.A. and Kotel’nikov, M.V., Flat wall probe in dense plasma flow, High Temp., 2017, vol. 55, no. 3, pp. 334–338.

    Article  Google Scholar 

  11. Kotel’nikov, M.V., Ploskii elektricheskii zond: teoriya i prilozheniya (Flat Electric Probe: Theory and Applications), Moscow: MAI, 2015.

  12. Streltsov, A.V. and Mishin, E.V., Ultralow frequency electrodynamics of magnetosphere-ionosphere interactions near the plasmapause during substorms, J. Geophys. Res.: Space Phys., 2018, vol. 123, no. 9, p. 7441.

    Article  Google Scholar 

  13. Kotel’nikov, V.A., On the calculation of the ion current density in a dense weakly initiated plasma under the condition of a thin collision layer of a volume charge, Inzh.-Fiz. Zh., 1984, vol. 16, no. 2, p. 322.

    Google Scholar 

  14. Savel’ev, I.V., Kurs fiziki, T. 1. Mekhanika. Molekulyarnaya fizika (Course of Physics, Vol. 1: Mechanics. Molecular Physics), Moscow: Nauka, 1989.

  15. Benilov, M.S., Rogov, B.V., and Tirskii, G.A., Theoretical determination of the saturation ion current on electric probes in subsonic plasma flows, Teplofiz. Vys. Temp., 1981, vol. 19, no. 5, p. 1031.

    Google Scholar 

  16. Benilov, M.S. and Tirskii, G.A., On saturation currents in a dense plasma, Prikl. Mekh. Tekh. Fiz., 1979, no. 6, p. 16.

  17. Benilov, M.S., Rogov, B.V., and Tirskii, G.A., On the saturation ion current to an electric probe in a slowly moving plasma, Prikl. Mekh. Tekh. Fiz., 1982, no. 3, p. 5.

  18. Egorova, Z.M., Kashevarov, A.V., and Tskhai, N.S., Ionic saturation current to electric probes in a plasma stream at low Reynolds numbers, Prikl. Mekh. Tekh. Fiz., 1990, no. 1, p. 159.

  19. Kashevarov, A.V., On the saturation current density at a critical point of an electric probe, Teplofiz. Vys. Temp., 1995, vol. 33, no. 1, p. 140.

    Google Scholar 

  20. Kashevarov, A.V., Electrical probes in a slowly moving and resting collision plasma, Cand. Sci. (Phys. Math.) Dissertation, Zhukovskii: 2005, p. 204.

  21. Tichý, M., Pétin, A., Kudrna, P., Horký, M., and Mazouffre, S., Electron energy distribution function in a low-power hall thruster discharge and near-field plume, Phys. Plasmas, 2018, vol. 25, no. 6, p. 061205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Kotelnikov or G. S. Filippov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Polyakov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotelnikov, V.A., Kotelnikov, M.V. & Filippov, G.S. Flat-Probe Diagnostic Methods for Collisional Plasma Flowing from Technological Plasmatrons. J. Mach. Manuf. Reliab. 49, 80–85 (2020). https://doi.org/10.3103/S1052618820010082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618820010082

Keywords:

Navigation