Skip to main content
Log in

Varieties of semiassociative relation algebras and tense algebras

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

It is well known that the subvariety lattice of the variety of relation algebras has exactly three atoms. The (join-irreducible) covers of two of these atoms are known, but a complete classification of the (join-irreducible) covers of the remaining atom has not yet been found. These statements are also true of a related subvariety lattice, namely the subvariety lattice of the variety of semiassociative relation algebras. The present article shows that this atom has continuum many covers in this subvariety lattice (and in some related subvariety lattices) using a previously established term equivalence between a variety of tense algebras and a variety of semiassociative \(r\)-algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andréka, H., Givant, S., Németi, I.: Decision Problems for Equational Theories of Relation Algebras. Memoirs of the American Mathematical Society. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  2. Andréka, H., Givant, S., Németi, I.: The lattice of varieties of representable relation algebras. J. Symb. Logic 59, 631–661 (1994)

    Article  MathSciNet  Google Scholar 

  3. Andréka, H., Jónsson, B., Németi, I.: Free algebras in discriminator varieties. Algebra Universalis 28, 401–447 (1991)

    Article  MathSciNet  Google Scholar 

  4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  5. Blok, W.: The lattice of modal logics: an algebraic investigation. J. Symb. Logic 45, 221–236 (1980)

    Article  MathSciNet  Google Scholar 

  6. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra, Millenium edition. http://www.math.uwaterloo.ca/~snburris

  7. Chin, L.H., Tarski, A.: Distributive and modular laws in the arithmetic of relation algebras. Univ. California Publ. Math. (N.S.) 1, 341–384 (1951)

  8. Givant, S.: Advanced Topics in Relation Algebras. Springer, Cham (2017)

    Book  Google Scholar 

  9. Givant, S.: Introduction to Relation Algebras. Springer, Cham (2017)

    Book  Google Scholar 

  10. Hirsch, R., Hodkinson, I.: Relation Algebras by Games. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (2002)

    MATH  Google Scholar 

  11. Jipsen, P.: Computer aided investigations of relation algebras. PhD thesis, Vanderbilt University (1992)

  12. Jipsen, P.: Discriminator varieties of Boolean algebras with operators. In: Rauszer, C. (ed.) Algebraic Methods in Logic and in Computer Science, Banach Center Publ., vol. 28. Institute of Math., Polish Acad. Sci., Warsaw, pp. 239–252 (1993)

  13. Jipsen, P., Kramer, R.L., Maddux, R.D.: Total tense algebras and symmetric semiassociative relation algebras. Algebra Universalis 34, 404–423 (1995)

    Article  MathSciNet  Google Scholar 

  14. Jónsson, B.: Varieties of relation algebras. Algebra Universalis 15, 273–298 (1982)

    Article  MathSciNet  Google Scholar 

  15. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I. Am. J. Math. 73, 891–939 (1951)

    Article  Google Scholar 

  16. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part II. Am. J. Math. 74, 127–162 (1952)

    Article  Google Scholar 

  17. Kowalski, T.: Varieties of tense algebras. Rep. Math. Logic 32, 53–95 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Kracht, M.: Tools and Techniques in Modal Logic. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1999)

    MATH  Google Scholar 

  19. Lyndon, R.C.: The representation of relation algebras. II. Ann. Math. 63, 294–307 (1956)

    Article  MathSciNet  Google Scholar 

  20. Maddux, R.D.: A perspective on the theory of relation algebras. Algebra Universalis 31, 456–465 (1994)

    Article  MathSciNet  Google Scholar 

  21. Maddux, R.D.: A sequent calculus for relation algebras. Ann. Pure Appl. Logic 25, 73–101 (1983)

    Article  MathSciNet  Google Scholar 

  22. Maddux, R.D.: Relation Algebras. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (2006)

    Google Scholar 

  23. Maddux, R.D.: Some varieties containing relation algebras. Trans. Am. Math. Soc. 272, 501–526 (1982)

    Article  MathSciNet  Google Scholar 

  24. Monk, J.D.: On representable relation algebras. Mich. Math. J. 11, 207–210 (1964)

    Article  MathSciNet  Google Scholar 

  25. Tarski, A.: Contributions to the theory of models. III. Proc. Konikl. Nederl. Akad. Wet. 58, 56–64 (1955)

    MathSciNet  MATH  Google Scholar 

  26. Tarski, A.: Equationally complete rings and relation algebras. Indag. Math. 18, 39–46 (1956)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Peter Jipsen for recommending [13], and Eli Hazel for solving a mysterious \(\hbox{\LaTeX}\) issue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Koussas.

Additional information

Presented by Peter Jipsen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koussas, J.M., Kowalski, T. Varieties of semiassociative relation algebras and tense algebras. Algebra Univers. 81, 21 (2020). https://doi.org/10.1007/s00012-020-0646-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-020-0646-9

Keywords

Mathematics Subject Classification

Navigation