Skip to main content
Log in

Background Volumetric Activity of Radon and Thoron in Soil and Surface Atmosphere Observed by a Radon-Recording Seismic Station

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

The SRS-05 radon-recording seismic station is widely used to monitor the volumetric activity of radon, primarily to detect its increase as an earthquake precursor. The low sensitivity of the sensor does not allow real-time recording of background volumetric activity of radon isotopes 222Rn (radon) and 220Rn (thoron). However, accurate measurement of background volumetric activity of radon isotopes is of great interest, especially in studies of ionization processes and the electric state of the near-surface atmosphere. This paper proposes a method for determining the mean background volumetric activity of radon isotopes based on α-spectra from a radon-recording seismic station over a long period (several days). The determined background volumetric activity of 222Rn and 220Rn in soil and near-surface atmosphere at the Borok Geophysical Observatory are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Anisimov, S.V., Galichenko, S.V., Shikhova, N.M., and Afinogenov, K.V., Electricity of the convective atmospheric boundary layer: Field observations and numerical simulation, Izv., Atmos. Oceanic Phys., 2014, vol. 50, no. 4, pp. 390–398.

    Article  Google Scholar 

  2. Anisimov, S.V., Galichenko, S.V., Aphinogenov, K.V., Makrushin, A.P., and Shikhova, N.M., Radon volumetric activity and ion production in the undisturbed lower atmosphere: Ground-based observations and numerical modeling, Izv.,Phys. Solid Earth, 2017, vol. 53, no. 1, pp. 147–161.

    Article  Google Scholar 

  3. Anisimov, S.V., Dmitriev, E.M., Afinogenov, K.V., Gur’ev, A.V., and Koz’mina, A.S., Variability of radon distribution in the atmospheric near-surface air above mid-latitude land regions, in Mezhdunarodnaya konferentsiya “Turbulentnost’, dinamika atmosfery i klimata”, posvyashchennaya stoletiyu so dnya rozhdeniya akademika Aleksandra Mikhailovicha Obukhova: Sbornik tezisov dokladov (Abstracts of the International Conference “Turbulence and Dynamics of the Atmosphere and Climate” on the 100th Birthday Anniversary of Academician Aleksandr Mikhailovich Obukhov), Moscow, Russia, 2018, Moscow: Fizmatkniga, 2018a, p. 110.

  4. Anisimov, S.V., Galichenko, S.V., Aphinogenov, K.V., and Prokhorchuk, A.A., Evaluation of the atmospheric boundary-layer electrical variability, Boundary-Layer Meteorol., 2018b, vol. 167, pp. 327–348.  https://doi.org/10.1007/s10546-017-0328-0

    Article  Google Scholar 

  5. Anisimov, S.V., Dmitriev, E.M., Aphinogenov, K.V., Guriev, A.V., and Kozmina, A.S., Variability of radon distribution in the atmospheric surface layer over the land of middle latitudes, IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 231. https://doi.org/10.1088/1755-1315/231/1/012006

    Article  Google Scholar 

  6. Firstov, P.P. and Makarov, E.O., Response of subsoil and groundwater-dissolved radon to changes in stress-strain state of the crust, Seism.Prib., 2015, vol. 51, no. 4, pp. 58–80.

    Google Scholar 

  7. Levshenko, V.T. and Grigoryan, A.G., The use of data from comprehensive studies when determining positions of faults in platform regions (case study of the Roslavl Fault), Geofiz. Issled., 2015, vol. 16, no. 3, pp. 55–62.

    Google Scholar 

  8. Perez, N.M., Hernandez, P.A., Padron, E., Melian, G., Marrero, R., Padilla, R., Barrancos, J., and Nolasco, D., Precursory subsurface 222Rn and 220Rn degassing signatures of the 2004 seismic crisis at Tenerife, Canary Islands, Pure Appl. Geophys., 2007, vol. 164, pp. 2431–2448.

    Article  Google Scholar 

  9. Rulenko, O.P. and Kuz’min, Yu.D., Increased radon and thoron in the Verkhne–Paratunka hydrothermal system, southern Kamchatka prior to the catastrophic Japanese earthquake of March 11, 2011, J. Volcanol. Seismol., 2015, vol. 9, no. 5, pp. 319–325.

    Article  Google Scholar 

  10. Spivak, A.A., Kishkina, S.B., Loktev, D.N., Rybnov, Yu.S., Solov’ev, S.P., and Kharlamov, V.A., Hardware and techniques for geophysical fields monitoring in megapolises and their application at the Geophysical Monitoring Center, Moscow (Institute of Geosphere Dynamics, Russian Academy of Sciences), Seism. Prib., 2016, vol. 52, no. 2, pp. 65–78.

  11. SRS-05 radon-measuring seismic station, a manual. http://www.ntm.ru/UserFiles/File/product/ION/srs-05/ rukovodstvo_po_ekspluatazii.doc. Accessed October 1, 2019.

  12. Svetozarov, V.V., Osnovy statisticheskoi obrabotki rezul’tatov izmerenii: Uchebnoe posobie (Fundamentals of Statistical Processing of Measurement Results: A Textbook), Moscow: Mosk. Inzh.-Fiz. Inst., 2005.

  13. Yang, T.F., Walia, V., Chyi, L.L., Fu, C.C., Chen, C.H., Liu, T.K., Son, S.R., Lee, C.Y., and Lee, M., Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan, Rad. Meas., 2005, vol. 40, pp. 496–502.

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 18-05-00233—development of the method for estimating the volumetric activity of radon isotopes) and the state task for Borok GO IPE RAS (project no. 0144-2014-0015—observatory-based recording of the volumetric activity of radon isotopes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Dmitriev.

Additional information

Translated by N. Astafiev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, S.V., Dmitriev, E.M. & Kozmina, A.S. Background Volumetric Activity of Radon and Thoron in Soil and Surface Atmosphere Observed by a Radon-Recording Seismic Station. Seism. Instr. 56, 245–253 (2020). https://doi.org/10.3103/S0747923920030019

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923920030019

Keywords:

Navigation