Skip to main content
Log in

Second Order Monotone Difference Schemes with Approximation on Non-Uniform Grids for Two-Dimensional Quasilinear Parabolic Convection-Diffusion Equations

  • MATHEMATICS
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

The present communication is devoted to the construction of monotone difference schemes of the second order of local approximation on non-uniform grids in space for 2D quasi-linear parabolic convection-diffusion equation. With the help of difference maximum principle, two-sided estimates of the difference solution are established and an important a priori estimate in a uniform norm C is proved. It is interesting to note that the maximal and minimal values of the difference solution do not depend on the diffusion and convection coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, Basel, 2001).

  2. A. A. Samarskii and A. A. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  3. P. P. Matus, T. K. T. Vo, and F. Gaspar, “Monotone difference schemes for linear parabolic equations with mixed boundary conditions,” Dokl. Nats. Akad. Nauk Belarusi 58 (5), 18–22 (2014).

    MathSciNet  MATH  Google Scholar 

  4. V. I. Mazhukin, D. A. Malafei, P. P. Matus, and A. A. Samarskii, “Difference schemes on irregular grids for equations of mathematical physics with variable coefficients,” Comput. Math. Math. Phys. 41, 379–391 (2001).

    MathSciNet  Google Scholar 

  5. D. A. Malafei, “Efficient monotone difference schemes for multidimensional convection–diffusion problems on nonuniform grids,” Dokl. Nats. Akad. Nauk Belarusi 44 (4), 21–25 (2000).

    MathSciNet  MATH  Google Scholar 

  6. P. P. Matus, D. Poliakov, and L. M. Hieu, “On the consistent two-side estimates for the solutions of quasilinear convection–diffusion equations and their approximations on nonuniform grids,” J. Comput. Appl. Math. 340, 571–581 (2018). https://doi.org/10.1016/j.cam.2017.09.020

    Article  MathSciNet  MATH  Google Scholar 

  7. P. P. Matus, L. M. Hieu, and L. G. Volkov, “Maximum principle for difference schemes with varying input data,” Dokl. Nats. Akad. Nauk Belarusi 59 (5), 13–17 (2015).

    MathSciNet  Google Scholar 

  8. A. Friedman, Partial Differential Equations of Parabolic Type (Dover, New York, 2013).

    Google Scholar 

  9. A. A. Samarskii, P. N. Vabishchevich, and P. P. Matus, Difference Schemes with Operator Factors (Kluwer, Boston, 2002).

    Book  Google Scholar 

  10. V. B. S. Prasath and J. C. Moreno, “On convergent finite difference schemes for variational–PDE-based image processing,” Comput. Appl. Math. 37, 1562–1580 (2018). https://doi.org/10.1007/s40314-016-0414-9

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Koide and D. Furihata, “Nonlinear and linear conservative finite difference schemes for regularized long wave equation,” Jpn. J. Ind. Appl. Math. 26, 15 (2009). https://doi.org/10.1007/BF03167544

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Kalantari and S. Shahmorad, “A stable and convergent finite difference method for fractional Black–Scholes model of American put option pricing,” Comput. Econ. 53, 191–205 (2019). https://doi.org/10.1007/s10614-017-9734-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Le M. Hieu, Dang N. H. Thanh or V. B. Surya Prasath.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hieu, L.M., Thanh, D.N. & Surya Prasath, V.B. Second Order Monotone Difference Schemes with Approximation on Non-Uniform Grids for Two-Dimensional Quasilinear Parabolic Convection-Diffusion Equations. Vestnik St.Petersb. Univ.Math. 53, 232–240 (2020). https://doi.org/10.1134/S1063454120020107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063454120020107

Keywords:

Navigation