Skip to main content
Log in

Impact of Deposition Potential on Structural and Magnetic Properties of Nano-Crystalline CoFe Alloy Thin Films

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of the electrodeposition potential on the compositional, magnetic, and microstructural properties of CoFe alloy thin films grown on a Cu sputtered silicon substrate was studied. Grazing incidence X-ray diffraction results indicate a diffraction peak at 2θ 45° related to (110) plane of a body-centered cubic structure of CoFe alloy. Field emission scanning electron microscopy images reveal densely packed uniform nano-granular morphology in all films. Energy-dispersive X-ray spectroscopy results indicate a variation in CoFe alloy film composition while varying the deposition potential, attributed to anomalous co-deposition. The magnetic hysteresis loop measurement shows films are having an easy magnetic direction oriented along in-plane, with high saturation and low coercivity. Surface and microscopic magnetization measurements prove that the deposition potential modifies the film roughness and influences the magnetic domain formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Coey, J.M.D., J. Magn. Magn. Mater., 1999, vols. 196–197, pp. 1–7.

    Article  Google Scholar 

  2. Feng, J.F., Rode, K., Ackland, K., Stamenov, P.S., Venkatesan, M., and Coey, J.M.D., J. Magn. Magn. Mater., 2012, vol. 324, no. 14, pp. 2298–2300.

    Article  Google Scholar 

  3. Cooper, E.I., Bonhote, C., Heidmann, J., Hsu, Y., et al., IBM J. Res. Dev., 2005, vol. 49, pp. 103–126.

    Article  Google Scholar 

  4. Bozorth, R.M., Ferromagnetism(Chapter XII), New York: D. van Nostrand, 1951.

    Google Scholar 

  5. Osaka, T., Asahi, T., Kawaji, J., and Yokoshima, T., Electrochim. Acta, 2005, vol. 50, pp. 4576–4585.

    Article  Google Scholar 

  6. Park, D.Y., Myung, N.V., Schwartz, M., and Nobe, K., Electrochim. Acta, 2002, vol. 47, pp. 2893–2900.

    Article  Google Scholar 

  7. Aguirre, M.C., Farias, E., Abraham, J., and Urreta, S.E., J. Alloy. Compd., 2015, vol. 627, pp. 393–401.

    Article  Google Scholar 

  8. Vega, V., Bohnert, T., Martens, S., Waleczek, M., et al., Nanotechnology, 2012, vol. 23, art. ID 465709.

    Article  Google Scholar 

  9. Vivas, L.G., Escrig, J., Trabada, D.G., Badini Confalonieri, G.A., et al., Appl. Phys. Lett., 2012, vol. 100, art. ID 252405.

    Article  Google Scholar 

  10. Haehnel, V., Fahler, S., Schaaf, P., Miglierini, M., et al., Acta Mater., 2010, vol. 58, pp. 2330–2337.

    Article  Google Scholar 

  11. Liu, X., Evans, P., and Zangari, G., IEEE Trans Magn., 2000, vol. 36, no. 5, pp. 3479–3481.

    Article  Google Scholar 

  12. Lu, W., Huang, P., He, C., and Yan, B., Int. J. Electrochem. Sci., 2012, vol. 7, pp. 12262–12269.

    Google Scholar 

  13. Lu, W., Ou, C., Huang, P., Yan, P., et al., Int. J. Electrochem. Sci., 2013, vol. 8, pp. 8218–8226.

    Google Scholar 

  14. Lu, W., Huang, P., He, C., and Yan, B., Int. J. Electrochem. Sci., 2013, vol. 8, pp. 914–923.

    Google Scholar 

  15. Myung, N.V., Park, D.Y., Urgiles, D.E., and George, T., Electrochim. Acta, 2004, vol. 49, pp. 4397–4404.

    Article  Google Scholar 

  16. Lallemand, F., Ricq, L., Wery, M., Bercot, P., and Pagetti, J., Appl. Surf. Sci., 2004, vol. 228, pp. 326–333.

    Article  Google Scholar 

  17. Ghemes, A., Pinzaru, O.D., Chiriac, H., Lupu, N., et al., J. Electrochem. Soc., 2017, vol. 164, pp. D13–D22.

    Article  Google Scholar 

  18. Qiang, C., Xu, J., Xiao, S., Jiao, Y., et al., Appl. Surf. Sci., 2010, vol. 257, pp. 1371–1376.

    Article  Google Scholar 

  19. Koza, J.A., Karnbach, F., Uhlemann, M., McCord, J., et al., Electrochim. Acta, 2010, vol. 55, pp. 819–831.

    Article  Google Scholar 

  20. Zielinski, M., Int. J. Electrochem. Sci., 2013, vol. 8, pp. 12192–12204.

    Google Scholar 

  21. Li, D., Gao, Y., Wang, Q., Li, G., et al., J. Electrochem. Soc., 2016, vol. 163, pp. D836–D841.

    Article  Google Scholar 

  22. Herzer, G., IEEE Trans. Magn., 1990, vol. 26, pp. 1397–1402.

    Article  Google Scholar 

  23. Zhang, Y. and Ivey, D.G., Mater. Sci. Eng., B, 2007, vol. 140, pp. 15–22.

    Article  Google Scholar 

  24. Mehrizi, S., Heydarzadeh Sohi, M., and Seyyed Ebrahimi, S.A., Surf. Coat. Techol., 2001, vol. 205, pp. 4757–4763.

    Article  Google Scholar 

  25. Correia, A.N., de Oliveira, R.C.B., and de Lima-Neto, P., J. Braz. Chem. Soc., 2006, vol. 17, pp. 90–97.

    Article  Google Scholar 

  26. Almasi Kashi, M., Ramazani, A., and Esmaeily, A.S., IEEE Trans. Magn., 2013, vol. 49, pp. 1167–1171.

    Article  Google Scholar 

  27. Taslimi, H., Hydarzadeh Sohi, M., Mehrizi, S., and Saremi, M., Int. J. Mod. Phys.: Conf. Ser., 2012, vol. 5, pp. 696–703.

    Google Scholar 

  28. Brenner, A., Electrodeposition of Alloys-Principles and Practice, New York: Academic, 1963.

    Google Scholar 

  29. Gao, J.H., Zhan, Q.F., He, W., Sun, D.L., et al., J. Magn. Magn. Mater., 2006, vol. 305, pp. 365–371.

    Article  Google Scholar 

  30. Matlosz, M., J. Electrochem. Soc., 1993, vol. 140, pp. 2272–2279.

    Article  Google Scholar 

  31. Dragos, O., Chiriac, H., Lupu, N., Grigoras, M., et al., J. Electrochem. Soc., 2016, vol. 163, pp. D83–D94.

    Article  Google Scholar 

  32. Chang, J.W., Andricacos, P.C., Petek, B., and Romankiw, L.T., Proc. Fifth Int. Symp. on Magnetic Materials, Processes, and Devices “Applications to Storage and Microelectromechanical Systems,” Pennington, NJ: Electrochem. Soc., 1999, vol. 90–8, pp. 361–372.

  33. Bai, A. and Hu, C.C., Electrochim. Acta, 2005, vol. 50, pp. 1335–1345.

    Article  Google Scholar 

  34. Alper, M., Kockar, H., Safak, M., and Baykul, M.C., J. Alloy. Compd., 2008, vol. 453, pp. 15–19.

    Article  Google Scholar 

  35. Kockar, H., Alper, M., Sahin, T., and Karaagac, O., J. Magn. Magn. Mater., 2010, vol. 322, pp. 1095–1097.

    Article  Google Scholar 

  36. Zhao, Y.P., Gamache, R.M., Wang, G.C., Lu, T.M., et al., J. Appl. Phys., 2001, vol. 89, pp. 1325–1330.

    Article  Google Scholar 

  37. Ng, V., Hu, J.F., Adeyeye, A.O., Wang, J.P., et al., J. Appl. Phys., 2002, vol. 91, pp. 7206–7208.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge Advanced Magnetics Group, Defense Metallurgical Research Laboratory for their support in providing experimental facility for magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mohanty.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soundararaj, A., Mohanty, J. Impact of Deposition Potential on Structural and Magnetic Properties of Nano-Crystalline CoFe Alloy Thin Films. Surf. Engin. Appl.Electrochem. 56, 159–165 (2020). https://doi.org/10.3103/S1068375520020180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520020180

Keywords:

Navigation