Skip to main content
Log in

Capability Process Assessment of Radial-Displacement Rolling of Heat-Resistant Alloy HN73MBTYU

  • Published:
Steel in Translation Aims and scope

Abstract—

The paper presents an experimental study on the technological capabilities of radial-displacement rolling of small diameter rods. These are made of heat-resistant alloy HN73MBTYU on pilot mills MISIS specifying the ingot rolling schedule with a diameter of 60 mm for a 22-mm-diameter rod. The following was conducted: a quality assessment of the rod obtained, as well as a compliance with the requirements of the current normative and technical documentation. The production possibility of small diameter rods of HN73MBTYU alloy from ingots with a 60-mm diameter that meets the technical documentation requirements, with the use of technology and radial displacement rolling mills, has been proved. The tested technological solutions have a high degree of readiness for industrial introduction in mini- and micro-metallurgical plant environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Adno, Yu.L., Phenomena of metallurgical mini-plants, Mirovaya Ekon. Mezhdunar. Otnosheniya, 2014, no. 3, pp. 34–45.

  2. Galkin, S.P., Theory and technology of stationary screw rolling of billets from microplastic steels and alloys, Doctoral (Eng.) Dissertation, Moscow: Moscow Inst. Steel Alloy, 1998.

  3. Galkin, S.P., Romantsev, B.A., and Kharitonov, E.A., Putting into practice innovative potential in the universal radial-shear rolling process, CIS Iron Steel Rev., 2014, no. 9, pp. 35–39.

  4. Galkin, S.P., Regulating radial-shear and screw rolling on the basis of the metal trajectory, Steel Transl., 2004, vol. 34, no. 7, pp. 57–60.

    Google Scholar 

  5. Romantsev, B.A., Galkin, S.P., Mikhailov, V.K., et al., Varietal micromill, Stal’, 1995, no. 2, pp. 40–42.

  6. Valeev, I.Sh. and Valeeva, A.Kh., Microhardness and microstructure of copper Cu 99,99% at radial-shear rolling, Pis’ma Mater., 2013, vol. 3, no. 1 (9), pp. 38–40.

  7. Dobatkin, S., Galkin, S., Estrin, Y., et al., Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling, J. Alloys Compd., 2019, vol. 774, no. 5, pp. 969–979.

    Article  CAS  Google Scholar 

  8. Akopyan, T.K., Aleshchenko, A.S., Belov, N.A., and Galkin, S.P., Effect of radial–shear rolling on the formation of structure and mechanical properties of Al–Ni and Al–Ca aluminum–matrix composite alloys of eutectic type, Phys. Met. Metallogr., 2018, vol. 119, no. 3, pp. 241–250.

    Article  CAS  Google Scholar 

  9. Naydenkin, E.V., Ratochka, I.V., Mishin, I.P., and Lykova, O.N., Evolution of the structural-phase state of a VT22 titanium alloy during helical rolling and subsequent aging, Russ. Phys. J., 2015, vol. 58, no. 8, pp. 1068–1073.

    Article  CAS  Google Scholar 

  10. Valeeva, A.Kh., Valeev, I.Sh., and Fazlyakhmetov, R.F., Microstructure of the β-phase in the Sn11Sb5.5Cu babbit, Phys. Met. Metallogr., 2017, vol. 118, no. 1, pp. 48–51.

    Article  CAS  Google Scholar 

  11. Naizabekov, A.B., Lezhnev, S.N., Dyja, H., et al., The effect of cross rolling on the microstructure of ferrous and non-ferrous metals and alloys, Metalurgija, 2017, vol. 56, nos. 1–2, pp. 199–202.

    CAS  Google Scholar 

  12. Sheremetyev, V., Kudryashova, A., Dubinskiy, S., et al., Structure and functional properties of metastable beta Ti–18Zr–14Nb (at %) alloy for biomedical applications subjected to radial shear rolling and thermomechanical treatment, J. Alloys Compd., 2018, vol. 737, pp. 678–683.

    Article  CAS  Google Scholar 

  13. Karpov, B.V., Patrin, P.V., Galkin, S.P., et al., Radial-shear rolling of titanium alloy VT-8 bars with controlled structure for small diameter ingots (≤200 mm), Metallurgist, 2018, vol. 61, nos. 9–10, pp. 884–890.

    Article  CAS  Google Scholar 

  14. Karpov, B.V., Skripalenko, M.M., Galkin, S.P., et al., Studying the nonstationary stages of screw rolling of billets with profiled ends, Metallurgist, 2017, vol. 61, nos. 3–4, pp. 257–264.

    Article  Google Scholar 

  15. Vol’ratkh, K., Production of round rolling using three-roll mills, Chern. Met., 2004, no. 12, pp. 23–24.

  16. Nussbaum, G., Kramer, W., Bittner, G., and Schnell, G., Erfahrungen und Ergebnisse nach dreijahrigem Betrieb eines 3-Walzen-Reduzier- und Kalibrierblocks, Stahl Eisen, 2006, vol. 126, no. 8, pp. 27–36.

    Google Scholar 

  17. Radyuchenko, Yu.S., Rotatsionnaya kovka (Rotational Forging), Moscow: Mashlit, 1962.

  18. Andreev, V.A., Yusupov, V.S., Perkas, M.M., et al., Mechanical and functional properties of commercial alloy TN-1 semiproducts fabricated by warm rotary forging and ECAP, Russ. Metall. (Engl. Transl.), 2017, vol. 10, pp. 890–894.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Patrin.

Additional information

Translated by A. Simakova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrin, P.V., Karpov, B.V., Aleshchenko, A.S. et al. Capability Process Assessment of Radial-Displacement Rolling of Heat-Resistant Alloy HN73MBTYU. Steel Transl. 50, 42–45 (2020). https://doi.org/10.3103/S096709122001009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S096709122001009X

Keywords:

Navigation