Skip to main content
Log in

Surface Tension and Density of Fe–Mn Melts

  • Published:
Steel in Translation Aims and scope

Abstract

The article presents original experimental data on surface tension of the Fe100 –xMnx (x = 4–13 wt %) melts. Surface tension and density of the melt were measured by the sessile drop method at heating from the liquidus temperature to 1780°C and subsequent sample cooling in the atmosphere of high-purity helium. Temperature and concentration dependences of surface tension and density of Fe–Mn melts were plotted. Manganese is a surface-active substance in iron melt. The value of surface tension coefficient of Fe–Mn melts decreases as Mn content increases. Experimental data on the surface tension of Fe–Mn melts is consistent with the theoretical dependences (the Pavlov–Popel’ equation and the Shishkovsky equation). During the investigation of Fe–Mn melt microheterogenity, correlation between the values of kinematic viscosity, surface tension, and density is revealed. Fluidity dependence of Fe–Mn melts on their density in the cooling mode has a linear character which indicates satisfaction of the Bachinskii law. Discrepancy in the melt viscosity ratios to the surface tension coefficient obtained from the experimental data and from the empirical formula is discovered. Using the experimental data on viscosity and surface tension of Fe–Mn melts, the entropy change in the melt’s bulk and the change in the melt’s surface entropy, respectively, are studied. The surface entropy and the bulk entropy in the melt decrease in their absolute value with its increasing Mn content. From the study results, it is concluded that there is no destruction of the microheterogeneous structure of Fe100 –xMnx (x = 4–13 wt %) melts when heated up to 1780°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Vlasov, V.I. and Komolova, E.F., Litaya vysokomargantsevaya stal’ G13L. Svoistva i proizvodstvo (Casted High Manganese Steel G13L: Properties and Production), Moscow: Mashgiz, 1963.

  2. Grässel, O. and Frommeyer, G., Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels, Mater. Sci. Technol., 1998, vol. 14, no. 12, pp. 1213–1217.

    Article  Google Scholar 

  3. Frommeyer, G., Brux, U., and Neumann, P., Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, ISIJ Int., 2003, vol. 43, no. 3, pp. 438–446.

    Article  CAS  Google Scholar 

  4. Grässel, O., Krüger, L., Frommeyer, G., and Meyer, L.W., High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development–properties–application, Int. J. Plast., 2000, vol. 16, nos. 11–12, pp. 1391–1409.

    Article  Google Scholar 

  5. Idrissi, H., Renard, K., Ryelandt, L., Schryvers, D., and Jacques, P.J., On the mechanism of twin formation in Fe–Mn–C TWIP steels, Acta Mater., 2010, vol. 58, pp. 2464–2476.

    Article  CAS  Google Scholar 

  6. Zhuang C., Liu J., Mi Z., Jiang H., Tang D., and Wang G., Non-metallic inclusions in TWIP steel, Steel Res. Int., 2014, vol. 85, no. 10, pp. 1432–1439.

    Article  CAS  Google Scholar 

  7. So, K.H., Kim, J.S., Chun, Y.S., Park, K.-T., Lee, Y.-K., and Lee, C.S., Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe–18Mn–1.5Al–0.6C TWIP steel, ISIJ Int., 2009, vol. 49, no. 12, pp. 1952–1959.

    Article  CAS  Google Scholar 

  8. Lee, J., Hoai, L.T., and Shin, M., Density and surface tension of liquid Fe–Mn alloys, Metall. Mater. Trans. B, 2011, vol. 42, no. 3, pp. 546–549.

    Article  CAS  Google Scholar 

  9. Hoai, L.T. and Lee, J., Density of liquid Fe–Mn–C alloys, Metall. Mater. Trans. B, 2011, vol. 42, no. 5, pp. 925–927.

    Article  CAS  Google Scholar 

  10. Hoai, L.T. and Lee, J., Effect of surface adsorption of carbon on the surface tension of liquid Fe–Mn–C alloys, J. Mater. Sci., 2012, vol. 47, no. 24, pp. 8303–8307.

    Article  CAS  Google Scholar 

  11. Dubberstein, T., Heller, H.-P., Klostermann, J., et al., Surface tension and density data for Fe–Cr–Mo, Fe–Cr–Ni, and Fe–Cr–Mn–Ni steels, J. Mater. Sci., 2015, vol. 50, no. 22, pp. 7227–7237.

    Article  CAS  Google Scholar 

  12. Adolf, Z., Plura, J, and Parma, V., Effect of carbon on surface tension in Fe–Mn–C, Fe–Si–C, Fe–P–C, and Fe–S–C melts, Hutnicke Listy, 1987, vol. 42, no. 8, pp. 537–544.

    CAS  Google Scholar 

  13. Popel’, S.I., Tsarevskii, B.V., and Dzhemilev, N.K., Isotherms of density and surface tension of Fe–Mn melts, Fiz. Met. Metalloved., 1964, vol. 18, no. 3, pp. 158–160.

    Google Scholar 

  14. Van Ts.-T., Karasev, R.A., and Samarin, A.M., Surface tension of Fe–Mn and Fe–S melts, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk,Metall. Topl., 1960, vol. 2, pp. 49–52.

  15. Nakamoto, M. and Tanaka, T., Estimation of activity coefficient of solute in infinite dilute liquid iron based on surface tension of binary liquid Fe alloys, J. Iron Steel Inst. Jpn., 2019, vol. 105, no. 3, pp. 53–57.

    Google Scholar 

  16. Wang, J., Bian, M., and Ma, L., Composition in surface of liquid Fe–Mn and Fe–S systems, Acta Metall. Sin., 1986, vol. 22, no. 3, pp. a270–a274.

    CAS  Google Scholar 

  17. Keene, B.J., Review of data for the surface tension of iron and its binary alloys, Int. Mater. Rev., 1988, vol. 33, no. 1, pp. 1–37.

    Article  CAS  Google Scholar 

  18. Gedgagova, M.V., Guketlov, Kh.M., Kumykov, V.K., Manukyants, A.R., Sergeev, I.N., and Sozaev, V.A., High-temperature measurements of surface tension of metals in vacuum, Bull. Russ. Acad. Sci.: Phys., 2007, vol. 71, no. 5, pp. 608–610.

    Article  Google Scholar 

  19. Direktor, L.B., Zaichenko, V.M., and Maikov, I.L., An improved method of sessile drop for determining the surface tension of liquids, High Temp., 2010, vol. 48, no. 2, pp. 176–180.

    Article  CAS  Google Scholar 

  20. Ostrovskii, O.I., Grigoryan, V.A., and Vishkarev, A.F., Svoistva metallicheskikh rasplavov (Properties of Metallic Melts), Moscow: Metallurgiya, 1988.

  21. Chikova, O., Sinitsin, N., Vyukhin, V., and Chezganov, D., Microheterogeneity and crystallization conditions of Fe-Mn melts, J. Cryst. Growth, 2019, vol. 527, art. ID 125239.

    Article  CAS  Google Scholar 

  22. Popel’, S.I., Poverkhnostnye yavleniya v rasplavakh (Surface Phenomena in Melts), Moscow: Metallurgiya, 1994.

  23. Semenchenko, V.K., Poverkhnostnye yavleniya v metallakh i splavakh (Surface Phenomena in Metals and Alloys), Moscow: Gostekhizdat, 1957.

  24. Eremenko, V.N., Ivanov, M.I., Lukashenko, G.M., et al., Fizicheskaya khimiya neorganicheskikh materialov (Physical Chemistry of Inorganic Materials), Eremenko, V.N., Ed., Kiev: Naukova Dumka, 1988, vol. 2.

    Google Scholar 

  25. Korol’kov, A.M., Surface tension of aluminum and its alloys, Izv. Akad. Nauk SSSR, Tekh. Nauki, 1956, no. 2, pp. 35–42.

  26. Nizhenko, V.I. and Eremenko, V.N., Surface-active additions in liquid metals, Sov. Powder Metall. Met. Ceram., 1964, vol. 3, no. 2, pp. 98–103.

    Article  Google Scholar 

  27. Fomenko, V.S., Emissionnye svoistva khimicheskikh elementov i ikh soedinenii. Spravochnik (Emission Properties of Chemical Elements and Their Compounds: Handbook), Samsonov, G.V., Ed., Kiev: Naukova Dumka, 1964.

    Google Scholar 

  28. Summ, B.D., New correlations of surface tension with volume properties of liquids, Vestn. Mosk. Univ., Ser. 2:Khim., 1999, vol. 40, no. 6, pp. 400–405.

    CAS  Google Scholar 

Download references

Funding

The reported study was funded by Russian Foundation for Basic Research, project no. 19-33-90198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sinitsin.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinitsin, N.I., Chikova, O.A. & V’yukhin, V.V. Surface Tension and Density of Fe–Mn Melts. Steel Transl. 50, 16–21 (2020). https://doi.org/10.3103/S0967091220010118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091220010118

Keywords:

Navigation