Skip to main content
Log in

High-Power Current-Pulse Generator Based on a Reverse Thyristor Converter

  • Published:
Steel in Translation Aims and scope

Abstract

In metal processing by powerful current pulses, there is a need for adjustment of both the pulse repetition rate and amplitude. This paper describes a powerful current-pulse generator with a controlled thyristor converter, which is used as a power source for a charging device for regulating the voltage (pulse amplitude) of a capacitor charge. The disadvantages of the generators associated with the current spike in the capacitor charge modes that reduces the supply network quality are discussed. The application of a reverse thyristor converter (RTC) as a power supply is considered to reduce the transient time at a voltage decrease on the capacitors. The generator’s structural diagram that consists of a reversible thyristor converter with separate control, a power unit, a capacitor recharge device, an automatic control system (ACS) for the charger parameters, and a capacitor charging control system is presented. The regulator parameters of the ACS are calculated. To obtain optimal transients, a standard methodology for regulator tuning according to a modular optimum is employed. In order to reduce overadjustment at the disturbance time reaching 100% and higher, the so-called logical device is introduced into the ACS. The latter blocks the control pulses on the converter thyristors and simultaneously reduces the signal at the output of the current regulator to zero. A simulation model of a powerful current pulse generator is synthesized in the MatLab-Simulink environment. The model is analyzed, and plots explaining the device’s operation principle and transients in various operating modes are shown. The use of a generator will allow high-performance adjustments of the current pulse amplitude and obtain sufficiently high-quality capacitor charge (discharge) transients, which will have a beneficial effect on the power supply network. The application of higher quality converters will significantly increase the current pulse repetition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Spitsyn, V.I. and Troitskii, O.A., Elektroplasticheskaya deformatsiya metalla (Electroplastic Deformation of Metal), Moscow: Nauka, 1985.

  2. Klimov, K.M. and Nevikov, I.I., The “electroplastic effect,” Strength Mater., 1984, vol. 16, no. 2, pp. 270–276.

    Article  Google Scholar 

  3. Beklemishev, N.N., Working of conducting materials by means of a locally nonuniform pulsed electromagnetic field, Sov. Electr. Eng., 1982, vol. 53, no. 11, pp. 113–117.

    Google Scholar 

  4. Klimov, K.M., Shnyrev, G.D., and Novikov, I.I., Change in the ductility of tungsten under the influence of electric current, Met. Sci. Heat Treat., 1977, vol. 19, no. 1, pp. 58–59.

    Article  Google Scholar 

  5. Klimov, K.M., Shnyrev, G.D., Novikov, I.I., and Isaev, A.V., Electrostimulated rolling into a tape of micron sections of tungsten and its alloys, Izv. Akad, Nauk SSSR, Met., 1975, no. 4, pp. 143–144.

  6. Ye, Y., Kure-Chu, S.-Z., Sun, Z., Li, X., Wang, H., and Tang, G., Nanocrystallization and enhanced surface mechanical properties of commercial pure titanium by electropulsing-assisted ultrasonic surface rolling, Mater. Des., 2018, vol. 149, no. 5, pp. 214–227.

    Article  CAS  Google Scholar 

  7. Chen, L., Wang, H., Liu, D., Ye, X., Li, X., and Tang, G., Effects of electropulsing cutting on the quenched and tempered 45 steel rods, J. Wuhan Univ. Technol.-Mater., 2018, vol. 33, pp. 204–211.

    CAS  Google Scholar 

  8. Zhang, R., Li, X., Kuang, J., Li, X., and Tang, G., Texture modification of magnesium alloys during electropulse treatment, Mater. Sci. Technol., 2017, vol. 33, pp. 1421–1427.

    Article  CAS  Google Scholar 

  9. Li, X., Li, X., Ye, Y., Zhang, R., Kure-Chu, S.-Z., and Tang, G., Deformation mechanisms and recrystallization behavior of Mg–3Al–1Zn and Mg–1Gd alloys deformed by electroplastic-asymmetric rolling, Mater. Sci. Eng., A, 2019, vol. 742, pp. 722–733.

    Article  CAS  Google Scholar 

  10. Ye, Y.-D., Li, X.-P., Sun, Z.-Y., Wang, H.-B., and Tang, G.-Y., Enhanced surface mechanical properties and microstructure evolution of commercial pure titanium under electropulsing-assisted ultrasonic surface rolling process, Acta Metall. Sin. (Engl. Lett.), 2018, vol. 31, no. 12, pp. 1272–1280.

  11. Tang, G., Zhang, J., Yan, Y., Zhou, H., and Fang, W., The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire, J. Mater. Process. Technol., 2003, vol. 137, no. 1, pp. 96–99.

    Article  CAS  Google Scholar 

  12. Kozlov, A., Mordyuk, B., and Chemyashevsky, A., On the additivity of acoustoplastic and electroplastic effects, Mater. Sci. Eng., A, 1995, vol. 190, no. 1, pp. 75–79.

    Article  Google Scholar 

  13. Ruszkiewicz, B.J., Grimm, T., Ragai, I., Mears, L., and Roth, J.T., A review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect, J. Manuf. Sci. Eng., 2017, vol. 139, no. 11, pp. 110801-1–110801-15.

    Article  Google Scholar 

  14. Fan, G., Sun, F., Meng, X., Gao, L., and Tong, G., Electric hot incremental forming of Ti–6A1–4V titanium sheet, Int. J. Adv. Manuf. Technol., 2010, vol. 49, nos. 9–12, pp. 941–947.

    Article  Google Scholar 

  15. Fan, G., Gao, L., Hussain, G., and Wu, Z., Electric hot incremental forming: a novel technique, Int. J. Mach. Tools Manuf., 2008, vol. 48, no. 15, pp. 1688–1692.

    Article  Google Scholar 

  16. Shi, X., Gao, L., Khalatbari, H., Xu, Y., Wang, H., and Jin, L., Electric hot incremental forming of low carbon steel sheet: accuracy improvement, Int. J. Adv. Manuf. Technol., 2013, vol. 68, nos. 1–4, pp. 241–247.

    Article  Google Scholar 

  17. Bao, W., Chu, X., Lin, S., and Gao, J., Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming, Mater. Des., 2015, vol. 87, pp. 632–639.

    Article  CAS  Google Scholar 

  18. Honarpisheh, M., Abdolhoseini, M., and Amini, S., Experimental and numerical investigation of the hot incremental forming of Ti–6A1–4V sheet using electrical current, Int. J. Adv. Manuf. Technol., 2016, vol. 83, nos. 9–12, pp. 2027–2037.

    Article  Google Scholar 

  19. Xu, D., Lu, B., Cao, T., Zhang, H., Chen, J., Long, H., and Cao, J., Enhancement of process capabilities in electrically-assisted double sided incremental forming, Mater. Des., 2016, vol. 92, pp. 268–280.

    Article  CAS  Google Scholar 

  20. Liu, R., Lu, B., Xu, D., Chen, J., Chen, F., Ou, H., and Long, H., Development of novel tools for electricity-assisted incremental sheet forming of titanium alloy, Int. J. Adv. Manuf. Technol., 2016, vol. 85, nos. 5–8, pp. 1137–1144.

    Article  Google Scholar 

  21. Xie, H., Dong, X., Peng, F., Wang, Q., Liu, K., Wang, X., and Chen, F., Investigation on the electrically-assisted stress relaxation of AZ31B magnesium alloy sheet, J. Mater. Process. Technol., 2016, vol. 227, pp. 88–95.

    Article  CAS  Google Scholar 

  22. Adams, D. and Jeswiet, J., Single-point incremental forming of 6061-T6 using electrically assisted forming methods, Proc. Inst. Mech. Eng., 2014, vol. 228, no. 7, pp. 757–764.

    Article  CAS  Google Scholar 

  23. Valoppi, B., Egea, A.J.S., Zhang, Z., Rojas, H.A.G., Ghiotti, A., Bruschi, S., and Cao, J., A hybrid mixed double-sided incremental forming method for forming Ti6A14V alloy, CIRP Ann., 2016, vol. 65, no. 1, pp. 309–312.

    Article  Google Scholar 

  24. Nguyen-Tran, H., Oh, H., Hong, S., Han, H.N., Cao, J., Ahn, S., and Chun, D., A review of electrically-assisted manufacturing, Int. J. Precis.: Eng. Manuf. Green Technol., 2015, vol. 2, no. 4, pp. 365–376.

    Google Scholar 

  25. Guan, L., Tang, G., and Chu, P.K., Recent advances and challenges in electroplastic manufacturing processing of metals, J. Mater. Res., 2010, vol. 25, no. 7, pp. 1215–1224.

    Article  CAS  Google Scholar 

  26. Kuznetsov, V.A., Gromov, V.E., and Simakov, V.P., USSR Inventor’s Certificate no. 884092, Byull. Izobret., 1981, no. 43.

  27. Kuznetsov, V.A. and Gromov, V.E., Effective high power pulse generator, Izv. Vyssh. Uchebn. Zaved., Elektromekh., 1986, no. 6, pp. 122–124.

  28. Zhmakin, Yu.D., Zagulyaev, D.V., Konovalov, S.V., Kuznetsov, V.A., and Gromov, V.E., High power current pulse generator for intensification of metal forming, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2008, no. 8, pp. 42–44.

  29. Kuznetsov, V.A., Polkovnikov, G.D., Kuznetsova, E.S., and Gromov, V.E., Development of automatic control system for electrostimulated drawing using high power current pulses, Trudy Vos’moi Vserossiiskoi nauchno-prakticheskoi konferentsii “Avtomatizirovannyi elektroprivod i promyshlennaya elektronika” (Proc Eight All-Russ. Sci.-Pract. Conf. “Automated Electric Drive and Industrial Electronics”), Ostrovlyanchik, V.Yu., Ed., Novokuznetsk: Sib. Gos. Ind. Univ., 2018, pp. 132–138.

  30. Onishchenko, G.B., Aksenov, M.I., and Grekhov, V.P., Avtomatizirovannyi elektroprivod promyshlennykh ustanovok (Automated Electric Drive of Industrial Units), Onishchenko, G.B., Ed., Moscow: Ross. Akad. S-kh. Nauk, 2001.

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 3.1283.2017/4.6.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Kuznetsov, G. D. Polkovnikov, V. E. Gromov, E. S. Kuznetsova or O. A. Peregudov.

Additional information

Translated by A. Ivanov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.A., Polkovnikov, G.D., Gromov, V.E. et al. High-Power Current-Pulse Generator Based on a Reverse Thyristor Converter. Steel Transl. 49, 848–853 (2019). https://doi.org/10.3103/S0967091219120064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091219120064

Keywords:

Navigation