Skip to main content
Log in

Variability of the Antarctic Ozone Anomaly in 2011–2018

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The variability of parameters of the Antarctic ozone anomaly is studied using data of the TOMS/OMI satellite monitoring of the ozone layer, MERRA-2 reanalysis, and balloon sounding of the vertical distribution of ozone and temperature at the South Pole. The dynamic processes in the Antarctic stratosphere which define conditions for the significant ozone layer destruction are analyzed. Despite the decrease in the concentration of ozone-depleting substances, the significant ozone loss in the recent 8 years was observed in the Antarctic in 2011 and 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. N. Vargin and E. A. Zhadin, “Influence of the Major Stratospheric Warming on the Antarctic Ozone Hole in 2002,” Meteorol. Gidrol., No. 8 (2004) [Russ. Meteorol. Hydrol., No. 8 (2004)].

  2. A. M. Zvyagintsev, V. V. Zuev, G. M. Kruchenitskii, and T. V. Skorobogatyi, “Contribution of Heterophase Processes to the Formation of the Spring Ozone Anomaly in Antarctica,” Issledovaniya Zemli iz Kosmosa, No. 3 (2002) [in Russian].

  3. A. M. Zvyagintsev, I. N. Kuznetsova, and G. I. Kuznetsov, “Evolution of the Spring Antarctic Ozone Anomaly,” Optika Atmosfery i Okeana, No. 7, 25 (2012) [in Russian].

  4. I. K. Larin, Chemical Physics of the Ozone Layer (GEOS, Moscow, 2013) [in Russian].

    Google Scholar 

  5. M. P. Nikiforova, P. N. Vargin, and A. M. Zvyagintsev, “Ozone Anomalies over Russia in the Winter-Spring of 2015/2016,” Meteorol. Gidrol., No. 1 (2019) [Russ. Meteorol. Hydrol., No. 1, 44 (2019)].

    Article  Google Scholar 

  6. E. E. Sibir and V. F. Radionov, “Variations in Total Ozone at the Russian Antarctic Stations. Results of Long-term Observations,” Problemy Arktiki i Antarktiki, No. 3, 64 (2018) [in Russian].

    Article  Google Scholar 

  7. S. P. Smyshlyaev, A. I. Pogorel’tsev, V. Ya. Galin, and E. A. Drobashevskaya, “Influence of Wave Activity on the Composition of the Polar Stratosphere,” Geomagnetizm i Aeronomiya, No. 1, 56 (2016) [Geomagn. Aeron., No. 1, 56 (2016)].

    Article  Google Scholar 

  8. W. Ball, J. Alsing, J. Daniel, D. Mortlock, J. Staehelin, J. Haigh, T. Peter, F. Tummon, R. Stubi, A. Stenke, J. Anderson, A. Bourassa, S. Davis, D. Degenstein, S. Frith, L. Froidevaux, C. Roth, V. Sofieva, R. Wang, J. Wild, P. Yu, J. Ziemke, and E. Rozanov, “Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery,” Atmos. Chem. Phys., 18 (2018).

    Article  Google Scholar 

  9. S. Bancala, K. Kruger, and M. Giorgetta, “The Preconditioning of Major Sudden Stratospheric Warmings,” J. Geophys. Res., 117 (2012).

    Article  Google Scholar 

  10. J. Bandoro, S. Solomon, A. Donohoe, D. Thompson, and B. Santer, “Influences of the Antarctic Ozone Hole on Southern Hemispheric Summer Climate Change,” J. Climate, 27 (2014).

    Article  Google Scholar 

  11. C. Bell, L. Gray, A. Charlton-Perez, and M. Joshi, “Stratospheric Communication of El Niño Teleconnections to European Winter,” J. Climate, 22 (2009).

    Article  Google Scholar 

  12. J. Charlton, A. O’Neill, W. Lahoz, A. Massacand, and P. Berrisford, “The Impact of the Stratosphere on the Troposphere during the Southern Hemisphere Stratospheric Sudden Warming, September 2002,” Quart. J. Roy. Meteorol. Soc., 131 (2005).

    Article  Google Scholar 

  13. S. Chubachi, “Preliminary Result of Ozone Observations at Syowa Station from February 1982 to January 1983,” Mem. Nat. Inst. Polar Res., 34 (1984).

  14. D. Domeisen, C. Garfinkel, and A. Butler, “The Teleconnection of El Niño Southern Oscillation to the Stratosphere,” Rev. Geophys., 56 (2018).

  15. J. Farman, B. Gardiner, and J. Shanklin, “Large Losses of Total Ozone in Antarctica Reveal Seasonal ClOx/NOx Interaction,” Nature, 315 (1985).

  16. E. Galytska, A. Rozanov, M. Chipperfield, S. Dhomse, M. Weber, C. Arosio, W. Feng, and J. Burrows, “Dynamically Controlled Ozone Decline in the Tropical Mid-stratosphere Observed by SCIAMACHY,” Atmos. Chem. Phys., 19 (2019).

    Article  Google Scholar 

  17. F. Goutail, J.-P. Pommereau, F. Lefevre, M. van Roozendael, S. Andersen, B.-A. Kastad, V. Dorokhov, E. Kyro, M. Chipperfield, and W. Feng, “Early Unusual Ozone Loss during the Arctic Winter 2002/2003 Compared to Other Winters,” Atmos. Chem. Phys., 5 (2005).

    Article  Google Scholar 

  18. M. Hitchman and M. Rogal, “ENSO Influences on Southern Hemisphere Column Ozone during the Winter to Spring Transition,” J. Geophys. Res., 115 (2010).

  19. D. Ivy and S. Solomon, “Radiative and Dynamical Influences on Polar Stratospheric Temperature Trends,” J. Climate, 29 (2016).

    Article  Google Scholar 

  20. P. Krummel, P. Fraser, and N. Derek, The 2015 Antarctic Ozone Hole Summary: Final Report (CISRO: Australian Government Department of Environment, Australia, 2016).

    Google Scholar 

  21. J. Kuttippurath, S. Godin-Beekmann, F. Lefevre, M. L. Santee, L. Froidevaux, and A. Hauchecorne, “Variability in Antarctic Ozone Loss in the Last Decade (2004–2013): High-resolution Simulations Compared to Aura MLS Observations,” Atmos. Chem. Phys., 15 (2015).

    Article  Google Scholar 

  22. U. Langematz, S. Meul, K. Grunow, E. Romanowsky, S. Oberlander, J. Abalichin, and A. Kubin, “Future Arctic Temperature and Ozone: The Role of Stratospheric Composition Changes,” J. Geophys. Res., 119 (2014).

    Google Scholar 

  23. A. de Laat and M. van Weele, “The 2010 Antarctic Ozone Hole: Observed Reduction in Ozone Destruction by Minor Sudden Stratospheric Warmings,” Sci. Reports, 38 (2011).

  24. G. Manney and Z. Lawrence, “The Major Stratospheric Final Warming in 2016: Dispersal of Vortex Air and Termination of Arctic Chemical Ozone Loss,” Atmos. Chem. Phys., 16 (2016).

    Article  Google Scholar 

  25. M. Molina and F. Rowland, “Stratospheric Sink for Chlorouoromethanes: Chlorine Atom-catalysed Destruction of Ozone,” Nature, 249 (1974).

    Article  Google Scholar 

  26. S. Montzka, G. Dutton, P. Yu, E. Ray, R. Portmann, J. Daniel, L. Kuijpers, B. Hall, D. Mondeel, C. Siso, J. Nance, M. Rigby, A. Manning, L. Hu, F. Moore, B. Miller, and J. Elkins, “An Unexpected and Persistent Increase in Global Emissions of Ozone-depleting CFC-11,” Nature, 557 (2018).

    Article  Google Scholar 

  27. P. Newman, L. Oman, A. Douglass, E. Fleming, S. Frith, M. Hurwitz, S. Kawa, C. Jackman, N. Krotkov, E. Nash, J. Nielsen, S. Pawson, R. Stolarski, and G. Velders, “What Would Have Happened to the Ozone Layer if Chlorofluorocarbons (CFCs) Had not been Regulated?”, Atmos. Chem. Phys., 9 (2009).

    Article  Google Scholar 

  28. K. Nishii and H. Nakamura, “Tropospheric Influence on the Diminished Antarctic Ozone Hole in September 2002,” Geophys. Res. Lett., 31 (2004).

  29. A. Pazmino, S. Godin-Beekmann, M. Ginzburg, S. Bekki, A. Hauchecorne, R. Piacentini, and E. Quel, “Impact of Antarctic Polar Vortex Occurrences on Total Ozone and UVB Radiation at Southern Argentinean and Antarctic Stations during 1997–2003 Period,” J. Geophys. Res., 110 (2005).

  30. D. Peters and P. Vargin, “Impact of Extratropical Rossby Wave Trains on Planetary Wave Activity in the Polar Southern Lower Stratosphere in September 2002,” Tellus A, 67 (2015).

  31. D. Peters, P. Vargin, and H. Koernich, “A Study of the Zonally Asymmetric Tropospheric Forcing of the Austral Vortex Splitting during September 2002,” Tellus A, 59 (2007).

  32. V. Rao, J. Fernandez, and S. Franchito, “Quasi-stationary Waves in the Southern Hemisphere during El Niño and La Niña Events,” Ann. Geophys., 22 (2004).

  33. E. Rozanov, M. Schlesinger, N. Andronova, F. Yang, S. Malyshev, V. Zubov, T. Egorova, and B. Li, “Climate/Chemistry Effects of the Pinatubo Volcanic Eruption Simulated by the UIUC Stratosphere/Troposphere GCM with Interactive Photochemistry,” J. Geophys. Res., No. D21, 107 (2002).

  34. A. Santoso, M. Mcphaden, and W. Cai, “The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño,” Rev. Geophys., 55 (2017).

    Article  Google Scholar 

  35. S. Solomon, J. Haskins, D. Ivy, and F. Min, “Fundamental Differences between Arctic and Antarctic Ozone Depletion,” Proc. Nat. Acad. Sci, No. 17, 111 (2014).

  36. S. Solomon, D. Ivy, D. Kinnison, M. Mills, R. Neely, and A. Schmidt, “Emergence of Healing in the Antarctic Ozone Layer,” Science, 10 (2016).

  37. S. Solomon, D. Kinnison, J. Bandoro, and R. Garcia, “Simulation of Polar Ozone Depletion: An Update,” J. Geophys. Res., 120 (2015).

    Google Scholar 

  38. R. Stolarski, A. Kreuger, M. Schoeberl, R. McPeters, P. Newman, and J. Alpert, “Nimbus-7 Satellite Measurements of the Springtime Antarctic Ozone Decrease,” Nature, 322 (1986).

    Article  Google Scholar 

  39. Y. Timofeyev, S. Smyshlyaev, Y. Virolainen, A. Garkusha, A. Polyakov, M. Motsakov, and O. Kirner, “Case Study of Ozone Anomalies over Northern Russia in the 2015/2016 Winter: Measurements and Numerical Modelling,” Ann. Geophys., 36 (2018).

    Article  Google Scholar 

  40. WMO Global Ozone Research and Monitoring Project, Report No. 57, 2017. Report of the Tenth Meeting of the Ozone Research Managers of the Parties to the Vienna Convention for the Protection of the Ozone Layer, Geneva, Switzerland, 28–30 March 2017.

  41. WMO Global Ozone Research and Monitoring Project, Report No. 58. Scientific Assessment of Ozone Depletion: 2018. Executive Summary.

  42. WMO Ozone Report No. 55. Scientific Assessment of Ozone Depletion. 2014 (WMO, 2014).

  43. Y. Xue and A. Kumar, “Evolution of the 2015/16 El Niño and Historical Perspective since 1979,” Science China Earth Sciences, 60 (2017).

    Article  Google Scholar 

  44. V. Zubov, E. Rozanov, T. Egorova, I. Karol, and W. Schmutz, “Role of External Factors in the Evolution of the Ozone Layer and Stratospheric Circulation in 21st Century,” Atmos. Chem. Phys., 13 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the specialists and organizations whose open observational data were used in the present study and are grateful to the reviewer for useful remarks.

Funding

The research was supported by the Russian Foundation for Basic Research (grant 19-05-00370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Vargin.

Additional information

Russian Text © The Author(s), 2020, published in Meteorologiya i Gidrologiya, 2020, No. 2, pp. 20–34.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargin, P.N., Nikiforova, M.P. & Zvyagintsev, A.M. Variability of the Antarctic Ozone Anomaly in 2011–2018. Russ. Meteorol. Hydrol. 45, 63–73 (2020). https://doi.org/10.3103/S1068373920020016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373920020016

Keywords

Navigation