Skip to main content
Log in

Limiting Thermal State of Capillary-Porous Power-Plant Components

  • Published:
Russian Engineering Research Aims and scope

Abstract

The behavior of poorly heat-conducting coatings of low porosity on metal substrates is simulated. Analysis of the thermoelasticity reveals the influence of the unit heat flux and the thermal compressive and tensile stress on the limiting state of the coating–substrate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Genbach, A.A., Bondartsev, D.Yu., and Iliev, I.K., Investigation of a high-forced cooling system for the elements of heat power installations, J. Mach. Eng., 2018, vol. 18, no. 2, pp. 106–117.

    Google Scholar 

  2. Genbach, A.A., Bondartsev, D.Yu., and Iliev, I.K., Modeling of capillary coatings and heat exchange surfaces of elements of thermal power plants, Bulg. Chem. Commun., 2018, vol. 50, special issue, pp. 133–139. https://elibrary.ru/title_about.asp?id=30604.

    Google Scholar 

  3. Genbach, A.A. and Bondartsev, D.Yu., Fracture of capillary-porous coatings in case of intensive heat-and-mass transfer, Deform. Razrushenie Mater., 2018, no. 10, pp. 40–46.

  4. Genbach, A.A. and Bondartsev, D.Yu., An experimental analysis of the heat transfer crisis in capillary-porous structures for elements of boiler turbine equipment, Tyazh. Mashinostr., 2018, no. 3, pp. 32–38.

  5. Genbach, A.A. and Bondartsev, D.Yu., Experimental method of investigation of the heat transfer crisis in a capillary-porous cooling system, News Acad. Sci. Resp. Kazakh., 2018, vol. 2, no. 428, pp. 81–88.

    Google Scholar 

  6. Genbach, A.A., Bondartsev, D.Yu., and Iliev, I.K., Heat transfer crisis in the capillary-porous cooling system of elements of heat and power installations, Therm. Sci., 2019, vol. 23, no. 2, pp. 849–860.

    Google Scholar 

  7. Jamialahmadi, M., Müller-Steinhagen, H., Abdollahi, H., and Shariati, A., Experimental and theoretical studies on subcooled flow boiling of pure liquids and multicomponent mixtures, Int. J. Heat Mass Transf., 2008, vol. 51, nos. 9–10, pp. 2482–2493.

    Article  Google Scholar 

  8. Ose, Y. and Kunugi, T., Numerical study on subcooled pool boiling, Prog. Nucl. Sci. Technol., 2011, vol. 2, pp. 125–129.

    Article  Google Scholar 

  9. Krepper, E., Koncar, B., and Egorov, Yu., CFD modeling of subcooled boiling—Concept, validation and application to fuel assembly design, Nucl. Eng. Des., 2007, vol. 237, no. 7, pp. 716–731.

    Article  Google Scholar 

  10. Ovsyanik, A.V., Modelirovanie protsessov teploobmena v kipyashchikh zhidkostyakh (Modeling of Heat Transfer Processes in Boiling Liquids), Gomel: Gomel’sk. Gos. Tekh. Univ. im. P.O. Sukhogo, 2012.

  11. Alekseik, O.S. and Kravets, V.Yu., Physical model of boiling on porous structure in the limited space, East.‑Eur. J. Enterp. Technol., 2013, vol. 64, nos. 4–8, pp. 26–31.

    Google Scholar 

  12. Polyaev, V.M., Maiorov, V.A., and Vasil’ev, L.L., Gidrodinamika i teploobmen v poristykh elementakh konstruktsii letatel’nykh apparatakh (Hydrodynamics and Heat Transfer in Porous Elements of Aircrafts), Moscow: Mashinostroenie, 1998.

  13. Kovalev, S.A. and Solov’ev, S.L., Isparenie i kondensatsiya v teplovykh trubakh (Evaporation and Condensation in Heat Pipes), Moscow: Nauka, 1989.

  14. Kupetz, M., Jenikejew, E., and Hiss, F., Modernization and life time extension on steam power plants in Eastern Europe and Russia, Therm. Eng., 2014, vol. 61, no. 6, pp. 417–424.

    Article  Google Scholar 

  15. Grin’, E.A., The possibilities of fracture mechanics as applied to problems of strength, service life, and substantiation of safe operation of heat-generating and mechanical equipment, Therm. Eng., 2013, vol. 60, no. 1, pp. 24–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Bondartsev.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genbach, A.A., Bondartsev, D.Y. Limiting Thermal State of Capillary-Porous Power-Plant Components. Russ. Engin. Res. 40, 384–389 (2020). https://doi.org/10.3103/S1068798X20050093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X20050093

Keywords:

Navigation