Skip to main content
Log in

Lifetime Assessment for a Cracked Compressor Disk Based on the Plastic Stress Intensity Factor

  • Structural Mechanics and Strength of Flight Vehicles
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

Based on a new fracture mechanics parameter, this study is concerned with assessment of the lifetime of a cracked aircraft gas turbine engine compressor disk operating under low cyclic loading conditions. In combination with the elastic-plastic properties of the VT3-1 titanium alloy, various combinations of angular velocity, temperature, surface flaw form and size are considered. A lifetime prediction model, which is based on the fracture process zone size and plastic stress intensity factor (SIF), is proposed. The durability of the compressor disk is predicted on the basis of SIF distributions obtained from elastic and plastic crack growth models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell, R, Pagotto, I.A., and Kirkhope, J., Evaluation of Stress Intensity Factors for Corner Cracked Turbine Discs under Arbitrary Loading Using Finite Element Methods, Engineering Fracture Mechanics, 1989, vol. 32, no. 1, pp. 65–79.

    Article  Google Scholar 

  2. Zhuang, W.Z., Prediction of Crack Growth from Bolt Holes in a Disk, International Journal of Fatigue, 2000, vol. 22, no. 3, pp. 241–250.

    Article  Google Scholar 

  3. Mukhin, V.S. and Shchipachev, A.M., Method for Calculating the Fatigue Life of Metals in High-Temperature Service, Izv. Vuz. Av. Tekhnika, 2001, vol. 44, no. 3, pp. 7–9 [Russian Aeronautics (Engl. Transl.), vol. 44, no. 3, pp. 9–12].

    Google Scholar 

  4. Vavilov, M.V. and Velikanova, N.P., Variation of Aircraft GTE Turbine Disks Cyclic Life Depending on Operational Factors, Izv. Vuz. Av. Tekhnika, 2011, vol. 54, no. 2, pp. 66–68 [Russian Aeronautics (Engl. Transl.), vol. 54, no. 2, pp. 213–216].

    Google Scholar 

  5. Hou, J., Wescott, R., and Atta, M., Prediction of Fatigue Crack Propagation Lives of Turbine Discs with Forging-Induced Initial Cracks, Engineering Fracture Mechanics, 2014, vol. 131, pp. 406–418.

    Article  Google Scholar 

  6. Bnaszkiewicz, M., Multilevel Approach to Lifetime Assessment of Steam Turbines, Int. Journal of Fatigue, 2015, vol. 73, pp. 39–47.

    Article  Google Scholar 

  7. Shlyannikov, V.N., Zakharov, A.P., and Yarullin, R.R., Structural Integrity Assessment of Turbine Disk on a Plastic Stress Intensity Factor Basis, Int. Journal of Fatigue, 2016, vol. 92, part 1, pp. 234–245.

    Article  Google Scholar 

  8. Ellyin, F., Crack Growth Rate under Cyclic Loading and Effect of Different Singularity Fields, Engineering Fracture Mechanics, 1986, vol. 25, no. 4, pp. 463–473.

    Article  Google Scholar 

  9. Shlyannikov, V.N., Modelling of Crack Growth by Fracture Damage Zone, Theoretical and Applied Fracture Mechanics, 1996, vol. 25, no. 3, pp. 187–210.

    Article  Google Scholar 

  10. Hutchinson, J.W., Singular Behaviour at the End of a Tensile Crack in a Hardening Material, Journal of the Mechanics and Physics of Solids, 1968, vol. 16, no. 1, pp. 13–31.

    Article  MATH  Google Scholar 

  11. Hutchinson, J.W., Plastic Stress and Strain Fields at a Crack Tip, Journal of the Mechanics and Physics of Solids, 1968, vol. 16, no. 5, pp. 337–347.

    Article  Google Scholar 

  12. Rice, J.R. and Rosengren, G.F., Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material, Journal of the Mechanics and Physics of Solids, 1968, vol. 16, no. 1, pp. 1–12.

    Article  MATH  Google Scholar 

  13. Ritchie, R.O, Knott, J.F, and Rice, J.R. On the Relationship between Critical Tensile Stress and Fracture Toughness in Mild Steel, Journal of the Mechanics and Physics of Solids, 1973, vol. 21, no. 6, pp. 395–410.

    Article  Google Scholar 

  14. Tvergaard, V. and Hutchinson, J.W., The Relation between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids, Journal of the Mechanics and Physics of Solids, 1992, vol. 40, no. 6, pp. 1377–1397.

    Article  MATH  Google Scholar 

  15. Taylor, D., The Theory of Critical Distances, Engineering Fracture Mechanics, 2008, vol. 75, no. 7, pp. 1696–1705.

    Article  Google Scholar 

  16. Susmel, L., The Theory of Critical Distances: A Review of Its Applications in Fatigue, Engineering Fracture Mechanics, 2008, vol. 75, no. 7, pp. 1706–1724.

    Article  Google Scholar 

  17. Susmel, L. and Taylor, D., A Critical Distance/Plane Method to Estimate Finite Life of Notched Components under Variable Amplitude Uniaxial/Multiaxial Fatigue Loading, Int. Journal of Fatigue, 2012, vol. 38, pp. 7–24.

    Article  Google Scholar 

  18. Sih, G.C., Strain-Energy-Density Factor Applied to Mixed Mode Crack Problems, Int. Journal of Fatigue, 1974, vol. 10, no. 3, pp. 305–321.

    Google Scholar 

  19. Kujawski, D. and Ellyin, F., A Fatigue Crack Growth Model with Load Ratio, Engineering Fracture Mechanics, 1987, vol. 28, no. 4, pp. 367–378.

    Article  Google Scholar 

  20. Ellyin, F. and Golos, K., Multiaxial Fatigue Damage Criterion, Journal of Engineering Materials and Technology, 1988, vol. 110, no. 1, pp. 63–68.

    Article  Google Scholar 

  21. Golos, K. and Ellyin, F., A Total Strain Energy Density Theory for Cumulative Fatigue Damage, Journal of Pressure Vessel Technology, 1988, vol. 110, no. 1, pp. 36–41.

    Article  Google Scholar 

  22. Baumel, A. Jr. and Seeger, T., Materials Data for Cyclic Loading (Supplement 1), Amsterdam: Elsevier Science Publishers, 1990.

    Google Scholar 

  23. Shlyannikov, V.N., Zakharov, A.P., and Tumanov, A.V., Nonlinear Fracture Resistance Parameters for Elements of Aviation Structures under Biaxial Loading, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 3, pp. 22–27 [Russian Aeronautics (Engl. Transl.), vol. 61, no. 3, pp. 340–346].

    Google Scholar 

  24. Shlyannikov, V.N., Elastic-Plastic Mixed-Mode Fracture Criteria and Parameters, Berlin: Springer-Verlag, 2003.

    Book  MATH  Google Scholar 

  25. Pisarenko, G.S. and Lebedev, A.A., Deformirovanie i prochnost’ materialov pri slozhnom napryazhennom sostoyanii (Deformation and Strength of Materials in a Complex Stress State), Kiev: Naukova Dumka, 1976.

    Google Scholar 

  26. Shlyannikov, V.N. and Tumanov, A.V., Characterization of Crack Tip Stress Fields in Test Specimens Using Mode Mixity Parameters, Int. Journal of Fracture, 2014, vol. 185, no. 1–2, pp. 49–76.

    Article  Google Scholar 

  27. Shlyannikov, V.N, Boychenko, N.V., Fernandez-Canteli, A., and Muniz-Calvente, M., Elastic and Plastic Parts of Strain Energy Density in Critical Distance Determination, Engineering Fracture Mechanics, 2015, vol. 147, pp. 100–118.

    Article  Google Scholar 

  28. Shlyannikov, V.N., Tumanov, A.V., Zakharov, A.P., and Gerasimenko, A.A., Surface Flaws Behavior under Tension, Bending and Biaxial Cyclic Loading, Int. Journal of Fatigue, 2016, vol. 92, part 2, pp. 557–576.

    Article  Google Scholar 

  29. Shlyannikov, V.N., Yarullin, R.R., and Ishtyryakov, I.S., Effect of Temperature on the Growth of Fatigue Surface Cracks in Aluminum Alloys, Theoretical and Applied Fracture Mechanics, 2018, vol. 96, pp. 758–767.

    Article  Google Scholar 

  30. Shlyannikov, V.N. and Zakharov, A.P., Generalization of Mixed Mode Crack Behaviour by the Plastic Stress Intensity Factor, Theoretical and Applied Fracture Mechanics, 2017, vol. 91, pp. 52–65.

    Article  Google Scholar 

  31. Shlyannikov, V.N., Iltchenko, B.V., Stepanov, N.V., Fracture Analysis of Turbine Disks and Computational–Experimental Background of the Operational Decisions, Engineering Failure Analysis, 2001, vol. 8, no. 5, pp. 461–475.

    Article  Google Scholar 

  32. ANSYS Theory Reference for the Mechanical APDL and Mechanical Applications Release 12.0, URL: http://dl.mycivil.ir/reza/ans_thry.pdf.

  33. Shlyannikov, V.N., Yarullin, R.R., and Ishtyryakov, I.S., Surface Crack Growth in Cylindrical Hollow Specimen upon Combined Fatigue Loading, Zavodskaya Laboratoriya. Diagnostika Materialov, 2016, vol. 82, no. 8, pp. 47–54.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Russian Science Foundation, project no. 17-19-01614.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Yarullin.

Additional information

Russian Text © The Author(s), 2020, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2020, No. 1, pp. 15–24.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyannikov, V.N., Yarullin, R.R. & Ishtyryakov, I.S. Lifetime Assessment for a Cracked Compressor Disk Based on the Plastic Stress Intensity Factor. Russ. Aeronaut. 63, 14–24 (2020). https://doi.org/10.3103/S1068799820010031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799820010031

Keywords

Navigation