Skip to main content
Log in

On One Approach to Design of the Rudder-Drive System Taking into Account the Aeroelastic Stability Requirements

  • Aero- and Gas-Dynamics of Flight Vehicles and Their Engines
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

An approach to design of the rudder—drive system taking into account the aeroelastic characteristics of the rudder is proposed. Mathematical models are developed that are used to solve problems of the rudder design parameters selection and the rudder—drive system stability analysis. An example of design of the rudder—drive system of the air-to-air unmanned aerial vehicle is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parafes’, S.G. and Turkin, I.K., Aktual’nye zadachi aehrouprugosti i dinamiki konstruktsii vysokomanevrennykh bespilotnykh letatel’nykh apparatov (Actual Tasks of Structure Aeroelasticity and Dynamics of Highly Maneuverable Unmanned Aerial Vehicles), Moscow: Izd. MAI-PRINT, 2016.

    Google Scholar 

  2. Bairamov, F.D. and Safronov, M.Yu., Stabilization of Elastic Wing Flexural-Torsional Oscillations, Izv. Vuz. Av. Tekhnika, 2002, vol. 45, no. 1, pp. 20–23 [Russian Aeronautics (Engl. Transl.), vol. 45, no. 1, pp. 24–30].

    Google Scholar 

  3. Shklyarchuk, F.N. and Alshebel Aiham, Mathematical Model of Swept Wing Aeroelasticy for Calculation of Aerodynamic Loads, Izv. Vuz. Av. Tekhnika, 2003, vol. 46, no. 1, pp. 13–18 [Russian Aeronautics (Engl. Transl.), vol. 46, no. 1, pp. 20–29].

    Google Scholar 

  4. Harash, E.V., Yadykin, Yu.V., and Abramovich, H., Nonlinear Bending-Torsion Flutter Experiments of a Medium-Aspect-Ratio Flexible Wing Model, Izv. Vuz. Av. Tekhnika, 2012, no. 4, pp. 34–38, [Russian Aeronautics (Engl. Transl.), vol. 55, no. 4, pp. 373–378].

    Google Scholar 

  5. Bakulin, V.N., Konopel’chev, M.A., and Nedbai, A.Ya., Flutter of a Laminated Cantilever Cylindrical Shell with a Ring-Stiffened Edge, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 4, pp. 14–19 [Russian Aeronautics (Engl. Transl.), vol. 61, no. 4, pp. 517–523].

    Google Scholar 

  6. Steijl, R., Dehaeze, F., Barakos, G.N., Garipova, L.I., Kusyumov, A.N., and Mikhailov, S.A., Simulation of Flow Around Blade Section with One Degree of Freedom Aeroelastic Flap, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 2, pp. 54–59 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 2, pp. 193–198].

    Google Scholar 

  7. Dehaeze, F., Barakos, G.N., Garipova, L.I., Kusyumov, A.N., and Mikhailov, S.A., Coupled CFD/CSD Simulation of the Helicopter Main Rotor in High-Speed Forward Flight, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 2, pp. 36–42 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 2, pp. 198–205].

    Google Scholar 

  8. Balas, G.J., Moreno, C., and Seiler, P.J., Robust Aeroservoelastic Control Utilizing Physics-Based Aerodynamic Sensing, Proc. of the AIAA Guidance, Navigation, and Control Conference, 2012, Minneapolis, AIAA 2012–4897.

    Google Scholar 

  9. Haghighat, S., Martins, J.R.R.A, and Liu, H.H.T., Aeroservoelastic Design Optimization of a Flexible Wing, Journal of Aircraft, 2012, vol. 49, no. 2, pp. 432–443.

    Article  Google Scholar 

  10. Nalci, M.O. and Kayran, A., Aeroservoelastic Modeling and Analysis of a Missile Control Surface with a Nonlinear Electromechanical Actuator, Proc. of the AIAA Atmospheric Flight Mechanics Conference on the AIAA Aviation Forum, 2014, Atlanta, AIAA 2014–2055.

    Google Scholar 

  11. Stanford, B., Aeroservoelastic Optimization under Stochastic Gust Constraints, Proc. of the Applied Aerodynamics Conference on the AIAA Aviation Forum, 2018, Atlanta, AIAA 2018–2837.

    Google Scholar 

  12. Gerashchenko, A.N., Postnikov, V.A., and Samsonovich, S.L., Pnevmaticheskie, gidravlicheskie i elektricheskie privody letatel’nykh apparatov na osnove volnovykh ispolnitel’nykh mekhanizmov (Pneumatic, Hydraulic, and Electric Drives of Flight Vehicles Based on Wave Actuators), Moscow: Izd. MAI-PRINT, 2010.

    Google Scholar 

  13. Polkovnikov, V.A., Predel’nye dinamicheskie vozmozhnosti sledyashchikh privodov letatel’nykh apparatov. Osnovnye teorii. Analiz i sintez (Limit Dynamic Capabilities of Servo Drives of Flight Vehicles. Basic Theory. Analysis and Synthesis), Moscow: Izd. MAI, 2015.

    Google Scholar 

  14. Parafes’, S.G., Metody strukturno-parametricheskoi optimizatsii konstruktsii bespilotnykh letatel’nykh apparatov (Techniques of Structural-Parametrical Optimization of Unmanned Aerial Vehicle Structure), Moscow: Izd. MAI-PRINT, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Parafes’.

Additional information

Russian Text © The Author(s), 2020, published in Izvestiya Vysshikh Uchebhnykh Zavedenii, Aviatsionnaya Tekhnika, 2020, No. 1, pp. 71–77.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parafes’, S.G., Turkin, I.K. On One Approach to Design of the Rudder-Drive System Taking into Account the Aeroelastic Stability Requirements. Russ. Aeronaut. 63, 75–82 (2020). https://doi.org/10.3103/S1068799820010109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799820010109

Keywords

Navigation