Skip to main content
Log in

Remote Identification of Liquids in a Dielectric Container Using Millimeter Waves. 4. Multifrequency Scanning

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Application of multi-frequency radiolocation allows to expand essentially received signals spectrum that increases amount of a target (object) classification identifiers including thermal portraits for radiometric measurements. In this paper it is represented a prototype of measuring radiometric unit allowing to carry out simultaneously contactless radiometric research of liquids in two wavelength ranges: 8-mm and 3-mm. It is developed the method of definition of parameters of capacity (container) where liquids are placed. It is estimated an influence of caustics appearing in case of waves reflections from internal wall of container and also on quality factor, attenuation coefficient and relative factor of container which are distantly measured. In two frequency ranges there are carried out researches of two water solutions and oil processing products (gasoline, dissolvents, diesel fuel). It is shown the liquids with close thermal portraits in identical frequency band due to close physical-chemical parameters, can have different thermal portraits obtained in different frequency bands reflecting dispersion properties of the liquids and they can be used for liquids identification visually or in case of received data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. A. V. Pavlyuchenko, P. P. Loshitskiy, A. I. Shelengovskiy, V. V. Babenko, “Remote identification of liquids in a dielectric container using millimeter waves. 1. Principal possibility,” Radioelectron. Commun. Syst. 60, No. 10, 423 (2017). DOI: https://doi.org/10.3103/S0735272717100016.

    Article  Google Scholar 

  2. A. V. Pavlyuchenko, P. P. Loshitskiy, A. I. Shelengovskiy, V. V. Babenko, “Remote identification of liquids in a dielectric container using millimeter waves. 2. Linear scanning,” Radioelectron. Commun. Syst. 61, No. 4, 157 (2018). DOI: https://doi.org/10.3103/S0735272718040039.

    Article  Google Scholar 

  3. A. V. Pavlyuchenko, P. P. Loshitskiy, A. I. Shelengovskiy, V. V. Babenko, “Remote identification of liquids in a dielectric container using millimeter waves. 3. Angular scanning,” Radioelectron. Commun. Syst. 62, No. 1, 12 (2019). DOI: https://doi.org/10.3103/S0735272719010035.

    Article  Google Scholar 

  4. D. A. Robertson, D. G. Macfortane, E. Gandini, etc., “The CONSORTIS 16–channel 340 GHz security imaging radar,” in Passive and Active Millimeter–Wave Imaging XXI, 2018, vol. 10634, pp. 8. DOI: https://doi.org/10.1117/12.2304376.

    Chapter  Google Scholar 

  5. E. A. Sharkov, Radiometric Distant Probing of Earth: Physical Principles, Vol. 1 [in Russian] (IKI RAN, Moscow, 2014).

    Google Scholar 

  6. Ya. D. Shirman, V. M. Orlenko, S. A. Selezniov, “Passive raiolocation of hidden radiation,” Systemy Ozbroiennia I Teknika, No. 1, 97 (2005).

    Google Scholar 

  7. S. Kueppers, S. Wang, H. Cetinkaya, R. Herschel, and N. Pohl, “Imaging characteristics of a highly integrated millimeter wave MIMO radar,” in Proceedings International Radar Symposium, 2018, vol. 2018–June. DOI: https://doi.org/10.23919/IRS.2018.8448247.

    Chapter  Google Scholar 

  8. Yu. N. Syedyshev, V. A. Tyutyunnik, “Information technologies of creating modems of multi-position active and passive radar systems,” Applied Radio Electron. 14, No. 1, 105 (2015). URL: http://nbuv.gov.ua/UJRN/Prre_2015_14_1_17.

    Google Scholar 

  9. I. M. Lifshits, S. A. Gredeskul, L. A. Pastur, Introduction in Theory of Disordered Systems [in Russian] (Nauka, Moscow, 1982).

    Google Scholar 

  10. V. G. Niz’ev, “Dipole-wave theory of electromagnetic diffraction,” Physics-Uspekhi 45, No. 5, 553 (2002). DOI: https://doi.org/10.1070/PU2002v045n05ABEH001091.

    Article  Google Scholar 

  11. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier Pub. Co, 1969). URL: https://www.rand.org/pubs/reports/R0456.html.

    Google Scholar 

  12. V. V. Kotliar, M. A. Lichmanov, “Analysis of diffraction of electromagnetic wave on infinite round cylinder with several homogeneous layers,” Komyuternaya Optika, No. 27, 26 (2007).

    Google Scholar 

  13. V. V. Syshchenko, E. A. Larikova, “Scattering of electromagnetic wave on dielectric cylinder in Born’ approximation,” Nauchnyie Vedomosti. Seria Matematika, Fizika 38, No, 5, 130 (2015).

    Google Scholar 

  14. J. Bruce, Curves and Singularities: A Geometrical Introduction to Singularity Theory, 2nd ed. (Cambridge University Press, 1993).

    Google Scholar 

  15. R. W. P. King and G. S. Smith, Antennas in Matter: Fundamentals, Theory, and Applications (MIT Press, 1981).

    Google Scholar 

  16. G. Malenkov, “Liquid water and ices: understanding the structure and physical properties,” J. Phys. Condens. Matter 21, 283101 (2009). DOI: https://doi.org/10.1088/0953-8984/21/28/283101. .

    Article  Google Scholar 

  17. W. Benenson, J. W. Harris, H. Stöcker, and H. Lutz (eds.), Handbook of Physics (Springer, 2002). DOI: https://doi.org/10.1007/0-387-21632-4. .

    Book  Google Scholar 

  18. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2nd ed. (Springer-Verlag, New York, 2009). DOI: https://doi.org/10.1007/978-0-387-84858-7. .

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pavlyuchenko.

Ethics declarations

ADDITIONAL INFORMATION

A. V. Pavlyuchenko and P. P. Loshitskiy

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347020030012 with DOI: https://doi.org/10.20535/S0021347020030012

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlyuchenko, A.V., Loshitskiy, P.P. Remote Identification of Liquids in a Dielectric Container Using Millimeter Waves. 4. Multifrequency Scanning. Radioelectron.Commun.Syst. 63, 115–125 (2020). https://doi.org/10.3103/S0735272720030012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272720030012

Navigation