Skip to main content
Log in

Discrete LS Estimates of Correlation Function of Bi-Periodically Correlated Random Signals

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Analysis of discrete estimates of bi-periodically correlated random processes (BPCRP)—mathematical models of signals with double stochastic periodicity was performed using least squares (LS) technique. It is shown that LS utilization allows to avoid systematic errors related to leakage effect. Expressions for estimate bias and dispersion were obtained, allowing determination systematic and mean square errors depending on discretization step, sample number and signal parameters were obtained. For quadrature BPCRP model discrete and continuous dispersions of LS estimation of correlation components were compared. Recommendations for discretization step are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. A. M. Yaglom, Correlation Theory of Stationary Random Functions with Examples from Meteorology [in Russian] (Leningrad, Gidrometeoizdat, 1981).

    Google Scholar 

  2. Jacques Max, Jean-Louis Lacoume, Méthodes et Techniques de Traitement du Signal [in French] (Dunod, Malakoff, 2004).

    Google Scholar 

  3. J. S. Bendat, A. G. Piersol, Random Data, Analysis and Measurement Procedures (New York, Wiley-Interscience, 1986).

    MATH  Google Scholar 

  4. W. A. Gardner (ed.), Cyclostationarity in Communications and Signal Processing (New York, IEEE Press, 1994).

    MATH  Google Scholar 

  5. H. L. Hurd, A. Miamee, Periodically Correlated Random Sequences: Spectral Theory and Practice (New Jersey, Wiley-Interscience, 2007). DOI: https://doi.org/10.1016/j.sigpro.2005.06.016 .

    Book  MATH  Google Scholar 

  6. W. A. Gardner, A. Napolitano, L. Paura, “Cyclostationarity: Half a century of research,” Signal Process. 86, No. 4, 639 (2006). DOI: https://doi.org/10.1016/j.sigpro.2005.06.016 .

    Article  MATH  Google Scholar 

  7. A. Napolitano, “Cyclostationarity: New trends and applications,” Signal Process. 120, 385 (2016). DOI: https://doi.org/10.1016/j.sigpro.2015.09.011 .

    Article  Google Scholar 

  8. I. M. Javorskyj, Mathematical Models and Analysis of Stochastic Oscillations [in Ukrainian] (Lviv, PMI NASU, 2013).

    Google Scholar 

  9. J. Antoni, “Cyclostationarity by examples,” Mechanical Systems and Signal Processing 23, No. 4, 987 (2009). DOI: https://doi.org/10.1016/j.ymssp.2008.10.010 .

    Article  Google Scholar 

  10. W. A. Gardner, “Exploitation of spectral redundancy in cyclostationary signals,” IEEE Signal Process. Mag. 8, No. 2, 14 (1991). DOI: https://doi.org/10.1109/79.81007 .

    Article  Google Scholar 

  11. C. Capdessus, M. Sidahmed, J. L. Lacoume, “Cyclostationary processes: application in gear faults early diagnosis,” Mech. Syst. Signal Process. 14, No. 3, 371 (2000). DOI: https://doi.org/10.1006/mssp.1999.1260 .

    Article  Google Scholar 

  12. I. Javorskyj, I. Kravets, I. Matsko, R. Yuzefovych, “Periodically correlated random processes: Application in early diagnostics of mechanical systems,” Mech. Syst. Signal Process. 83, 406 (2017). DOI: https://doi.org/10.1016/j.ymssp.2016.06.022 .

    Article  Google Scholar 

  13. A. Napolitano, Generalizations of Cyclostationary Signal Processing: Spectral Analysis and Applications (Cambridge, MA, Wiley-IEEE Press, 2012).

    Book  Google Scholar 

  14. A. Napolitano, Cyclostationary Processes and Time Series: Theory, Applications, and Generalizations (Cambridge, MA, Academic Press, 2019).

    Google Scholar 

  15. I. Javorskyj, I. Kravets, R. Yuzefovych, I. G. Stetsko, I. Matsko, “Development of information-measuring system for multidimensional diagnostics of rotating units of machine complexes,” in: Resource and Safety Operation Issues of Structures, Buildings, and Machines [in Ukrainian] (Kyiv, IEW NASU, 2012).

    Google Scholar 

  16. I. M. Javorskyj, R. M. Yuzefovych, O. Y. Dzeryn, “LSM-harmonic analysis of bi-periodic nonstationary vibration signals,” Information Extraction and Processing, No. 45, 14 (2017). URL: http://vidbir.ipm.lviv.ua/vidbir-article-2017-121-3.htm

    Google Scholar 

  17. I. M. Javorskyj, O. Y. Dzeryn, R. M. Yuzefovych, “Covariance LSM-analysis of biperiodic nonstationary vibration signals,” Inf. Extr. Process. 2018, No. 46, 19 (2018). DOI: https://doi.org/10.15407/vidbir2018.46.019 .

    Article  Google Scholar 

  18. I. Javors’kyj, I. Matsko, R. Yuzefovych, Z. Zakrzewski, “Discrete estimators of characteristics for periodically correlated time series,” Digit. Signal Process. A Rev. J. 53, 25 (2016). DOI: https://doi.org/10.1016/j.dsp.2016.03.003 .

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ihor N. Yavorskyj or Roman Yuzefovych.

Ethics declarations

ADDITIONAL INFORMATION

I. N. Yavorskyj, O. Yu. Dzeryn, and R. Yuzefovych

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347020030036 with DOI: https://doi.org/10.20535/S0021347020030036

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavorskyj, I.N., Dzeryn, O.Y. & Yuzefovych, R. Discrete LS Estimates of Correlation Function of Bi-Periodically Correlated Random Signals. Radioelectron.Commun.Syst. 63, 136–155 (2020). https://doi.org/10.3103/S0735272720030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272720030036

Navigation