Skip to main content
Log in

Digitally-Controlled Ring Oscillator for Wide Tuning Range Applications

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

In this paper, two digitally-controlled ring oscillators (DROs) with similar structure but different constructive cells have been proposed. These proposed DROs include of 5 stages, and each stage contains 10 parallel delay cells. In addition, each stage has fine and coarse parts for adjusting the output frequency. The proposed designs have a wide frequency range and high frequency. The frequency range of the first DRO changes from 1.566 to 20.25 GHz (92.6%) and for the second DRO, its frequency is from 2.218 to 22.86 GHz (90.31%). By considering all possible digital codes for fine and coarse stages, the power consumption of the first DRO changes from 1.1 to 13.64 mW, while this value for the second DRO varies from 144.1 μW to 1.76 mW. The phase noise of the first DRO at the center frequency of 20.25 GHz and the 1 MHz offset is equal to –76.24 dBc/Hz, and at 10 MHz offset the phase noise is equal to –104 dBc/Hz. The phase noise of the second DRO at the center frequency of 22.86 GHz and the 1 MHz offset is equal to –66.64 dBc/Hz, and at the 10 MHz offset the phase noise is equal to –95.39 dBc/Hz. The proposed DROs have been simulated by using the Cadence software in TSMC 65nm CMOS technology and 1.2 V power supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. M.L. Sheu, Y.S. Tiao, and L.J. Taso, “A 1-V 4-GHz wide tuning range voltage-controlled ring oscillator in 0.18 μm CMOS,” Microelectronics J., vol. 42, no. 6, pp. 897–902, Jun. 2011, doi: https://doi.org/10.1016/j.mejo.2011.03.015.

    Article  Google Scholar 

  2. C.C. Chung, C.Y. Ko, and S.E. Shen, “Built-in self-calibration circuit for monotonic digitally controlled oscillator design in 65-nm CMOS technology,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 58, no. 3, pp. 149–153, Mar. 2011, doi: https://doi.org/10.1109/TCSII.2011.2110370.

    Article  Google Scholar 

  3. C.C. Chung and C.Y. Ko, “A Fast phase tracking ADPLL for video pixel clock generation in 65 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 46, no. 10, pp. 2300–2311, Oct. 2011, doi: https://doi.org/10.1109/JSSC.2011.2160789.

    Article  Google Scholar 

  4. Y.P. Chen et al., “Persistent Laser-Induced Leakage in a 20 nm Charge-Pump Phase-Locked Loop (PLL),” IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp. 512–518, Jan. 2017, doi: https://doi.org/10.1109/TNS.2016.2627940.

    Article  Google Scholar 

  5. J.M. Lin and C.Y. Yang, “A fast-locking all-digital phase-locked loop with dynamic loop bandwidth adjustment,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 62, no. 10, pp. 2411–2422, Oct. 2015, doi: https://doi.org/10.1109/TCSI.2015.2477575.

    Article  MathSciNet  Google Scholar 

  6. R. Khalirbaginov and A. Haymin, “Novel HDL design of digital controlled oscillator for ADPLL,” in Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2019, 2019, pp. 1678–1682, doi: https://doi.org/10.1109/EIConRus.2019.8657238.

    Chapter  Google Scholar 

  7. H. Yoon, S. Park, and J. Choi, “A Low-Jitter Injection-Locked Multi-Frequency Generator Using Digitally Controlled Oscillators and Time-Interleaved Calibration,” IEEE J. Solid-State Circuits, vol. 54, no. 6, pp. 1564–1574, Jun. 2019, doi: https://doi.org/10.1109/JSSC.2019.2893513.

    Article  Google Scholar 

  8. C.H. Wong, Y. Li, J. Du, X. Wang, and M.C.F. Chang, “0.75 V 2.6 GHz digital bang–bang PLL with dynamic double-tail phase detector and supply-noise-tolerant gm-controlled DCO,” Electron. Lett., vol. 54, no. 4, pp. 198–200, Feb. 2018, doi: https://doi.org/10.1049/el.2017.4168.

    Article  Google Scholar 

  9. C.M. Lin, K.Y. Kao, and K.Y. Lin, “A wideband, low-noise, and high-resolution digitally-controlled oscillator for SDR applications,” in Asia-Pacific Microwave Conference Proceedings, APMC, 2019, vol. 2018-Novem, pp. 270–272, doi: https://doi.org/10.23919/APMC.2018.8617605.

    Chapter  Google Scholar 

  10. L. Xiu, X. Wei, and Y. Ma, “A full digital fractional-N TAF-FLL for digital applications: Demonstration of the principle of a frequency-locked loop built on time-average-frequency,” IEEE Trans. Very Large Scale Integr. Syst., vol. 27, no. 3, pp. 524–534, Mar. 2019, doi: https://doi.org/10.1109/TVLSI.2018.2888625.

    Article  Google Scholar 

  11. C.C. Chung, D. Sheng, and C.H. Chen, “An all-digital phase-locked loop compiler with liberty timing files,” in Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2014, 2014, doi: https://doi.org/10.1109/VLSI-DAT.2014.6834903.

    Chapter  Google Scholar 

  12. T. Siriburanon et al., “A 2.2 GHz-242 dB-FOM 4.2 mW ADC-PLL Using Digital Sub-Sampling Architecture,” IEEE J. Solid-State Circuits, vol. 51, no. 6, pp. 1385–1397, Jun. 2016, doi: https://doi.org/10.1109/JSSC.2016.2546304.

    Article  Google Scholar 

  13. P. Muppala, “High-frequency Wide-Range All Digital Phase Locked Loop in 90nm CMOS,” Brows. all Theses Diss., Jan. 2011. URI: https://corescholar.libraries.wright.edu/etd_all/1056/

    Google Scholar 

  14. J.A. da Cruz, “A Study on Digitally Controlle Oscillators for All-Digital Phase-Locked Loops,” Faculdade De Engenharia Da Universidade Do Porto A, 2015.

    Google Scholar 

  15. A. Mandal, R. Mishra, and M.R. Nagar, “Implementation of complex digital PLL for phase detection in software defined radar,” Radioelectron. Commun. Syst., vol. 59, no. 4, pp. 151–162, Apr. 2016, doi: https://doi.org/10.3103/S0735272716040014.

    Article  Google Scholar 

  16. A. Ramazani, S. Biabani, and G. Hadidi, “CMOS ring oscillator with combined delay stages,” AEU - Int. J. Electron. Commun., vol. 68, no. 6, pp. 515–519, Jun. 2014, doi: https://doi.org/10.1016/j.aeue.2013.12.008.

    Article  Google Scholar 

  17. C.T. Jung and Y. Ho, “Design of a temperature-insensitive digitally-controlled oscillator for on-chip reference clock,” in Proceedings - 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems, IESES 2018, 2018, vol. 2018-Janua, pp. 499–503, doi: https://doi.org/10.1109/IESES.2018.8349928.

    Chapter  Google Scholar 

  18. T. Lee, Y.H. Kim, and L.S. Kim, “A 5-Gb/s digital clock and data recovery circuit with reduced DCO supply noise sensitivity utilizing coupling network,” IEEE Trans. Very Large Scale Integr. Syst., vol. 25, no. 1, pp. 380–384, Jan. 2017, doi: https://doi.org/10.1109/TVLSI.2016.2566927.

    Article  Google Scholar 

  19. S. Salem, M. Tajabadi, and M. Saneei, “The design and analysis of dual control voltages delay cell for low power and wide tuning range ring oscillators in 65 nm CMOS technology for CDR applications,” AEU - Int. J. Electron. Commun., vol. 82, pp. 406–412, Dec. 2017, doi: https://doi.org/10.1016/j.aeue.2017.10.012.

    Article  Google Scholar 

  20. W.T. Lee, J. Shim, and J. Jeong, “Design of a three-stage ring-type voltage-controlled oscillator with a wide tuning range by controlling the current level in an embedded delay cell,” Microelectronics J., vol. 44, no. 12, pp. 1328–1335, Dec. 2013, doi: https://doi.org/10.1016/j.mejo.2013.09.003.

    Article  Google Scholar 

  21. Z.Z. Chen, Y.C. Kuan, Y. Li, B. Hu, C.H. Wong, and M.C.F. Chang, “DPLL for Phase Noise Cancellation in Ring Oscillator-Based Quadrature Receivers,” IEEE J. Solid-State Circuits, vol. 52, no. 4, pp. 1134–1143, Apr. 2017, doi: https://doi.org/10.1109/JSSC.2017.2647925.

    Article  Google Scholar 

  22. J. Gorji and M.B. Ghaznavi-Ghoushchi, “A 2.7 to 4.6 GHz multi-phase high resolution and wide tuning range digitally-controlled oscillator in CMOS 65nm,” in 2016 24th Iranian Conference on Electrical Engineering, ICEE 2016, 2016, pp. 1694–1699, doi: https://doi.org/10.1109/IranianCEE.2016.7585794.

    Chapter  Google Scholar 

  23. M.E.S. Elrabaa, “A portable high-frequency digitally controlled oscillator (DCO),” Integr. VLSI J., vol. 47, no. 3, pp. 339–346, Jun. 2014, doi: https://doi.org/10.1016/j.vlsi.2013.10.009.

    Article  Google Scholar 

  24. M. Kumar, S.K. Arya, and S. Pandey, “Digitally controlled oscillator design with a variable capacitance XOR gate,” J. Semicond., vol. 32, no. 10, p. 105001, 2011, doi: https://doi.org/10.1088/1674-4926/32/10/105001.

    Article  Google Scholar 

  25. M.C. Su, S.J. Jou, and W.Z. Chen, “A Low-Jitter Cell-Based Digitally Controlled Oscillator With Differential Multiphase Outputs,” IEEE Trans. Very Large Scale Integr. Syst., vol. 23, no. 4, pp. 766–770, Apr. 2015, doi: https://doi.org/10.1109/TVLSI.2014.2314740.

    Article  Google Scholar 

  26. D. Sheng, C.C. Chung, and C.Y. Lee, “An ultra-low-power and portable digitally controlled oscillator for SoC applications,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 54, no. 11, pp. 954–958, 2007, doi: https://doi.org/10.1109/TCSII.2007.903782.

    Article  Google Scholar 

  27. P. Muppala, S. Ren, and G.Y.H. Lee, “Design of high-frequency wide-range all digital phase locked loop in 90 nm CMOS,” Analog Integr. Circuits Signal Process., vol. 75, no. 1, pp. 133–145, Apr. 2013, doi: https://doi.org/10.1007/s10470-013-0043-9.

    Article  Google Scholar 

  28. D. De Caro, “Glitch-free NAND-based digitally controlled delay-lines,” IEEE Trans. Very Large Scale Integr. Syst., vol. 21, no. 1, pp. 55–66, 2013, doi: https://doi.org/10.1109/TVLSI.2011.2181547.

    Article  Google Scholar 

  29. K.H. Choi, J.B. Shin, J.Y. Sim, and H.J. Park, “An interpolating digitally controlled oscillator for a wide-range all-digital PLL,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 56, no. 9, pp. 2055–2063, 2009, doi: https://doi.org/10.1109/TCSI.2008.2011577.

    Article  MathSciNet  Google Scholar 

  30. A. Abadian, M. Lotfizad, M.B. Ghaznavi-Ghoushchi, and N.E. Majd, “An ultra low power and low complexity all digital PLL with a high resolution digitally controlled oscillator,” IEICE Electron. Express, vol. 8, no. 21, pp. 1801–1807, Nov. 2011, doi: https://doi.org/10.1587/elex.8.1801.

    Article  Google Scholar 

  31. R.K. Pokharel et al., “Digitally controlled ring oscillator using fraction-based series optimization for inductorless reconfigurable all-digital PLL,” in 2011 IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, SiRF 2011 - Digest of Papers, 2011, pp. 69–72, doi: https://doi.org/10.1109/SIRF.2011.5719321.

    Chapter  Google Scholar 

  32. E.R. Suraparaju, P.V.R. Arja, and S. Ren, “A 1.1-8.2 GHz tuning range In-phase and Quadrature output DCO design in 90 nm CMOS technology,” in Midwest Symposium on Circuits and Systems, 2015, vol. 2015-September, doi: https://doi.org/10.1109/MWSCAS.2015.7282171.

    Chapter  Google Scholar 

  33. J. M. Rabaey, Digital Integrated Circuits: A Design Perspective, 2nd ed. (PH, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirin Askari.

Ethics declarations

ADDITIONAL INFORMATION

Sagar B. Patel, Jaymin Bhalani, and Y. N. Trivedi

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347020020016 with DOI: https://doi.org/10.20535/S0021347020020016

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, S., Saneei, M. Digitally-Controlled Ring Oscillator for Wide Tuning Range Applications. Radioelectron.Commun.Syst. 63, 55–65 (2020). https://doi.org/10.3103/S0735272720020016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272720020016

Navigation