Skip to main content
Log in

Reconstruction of a Wavefront Distorted by Atmospheric Turbulence with Account for Optical Scheme of the Telescope

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Reconstruction of a wavefront containing turbulent distortions of optical radiation is considered. The Hartmann method based reconstruction is carried out using the wave function approximation by Zernike polynomials according to estimates of local slopes and analyzed on the basis of filling Hartmannograms with focal spots, depending on the telescope design. The volume and quality of information about phase distortions of radiation are estimated using the Hartmannograms formed in the receiver plane, thereby developing methods for reducing the telescope induced residual reconstruction error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. P. Lukin, N. N. Botygina, O. N. Emaleev, et al., “Shack-Hartmann Sensor Based on a Low-Aperture Off-Axis Diffraction Lens Array,” Avtometriya 45(2), 88–98 (2009) [Optoelectron., Instrum. Data Process. 45 (2), 161–170 (2009)].

    Google Scholar 

  2. G. I. Pinigin, Ground-Based Optical Astrometry Telescopes (Atoll, Nikolaev, 2000) [in Russian].

    Google Scholar 

  3. V. V. Lavrinov, “Dynamic Control of Adaptive Optics Correction of Turbulent Distortions in Laser Beams,” Optika Atmosfery i Okeana 30(10), 893–901 (2017).

    Google Scholar 

  4. V. P. Lukin and B. V. Fortes, Adaptive Formation of Beams and Images in the Atmosphere (Izd. Sib. Otd. Ros. Akad. Nauk, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  5. N. N. Botygina, P. G. Kovadlo, E. A. Kopylov, et al., “Estimation of the Astronomical Seeing at the Large Solar Vacuum Telescope Site from Optical and Meteorological Measurements,” Optika Atmosfery i Okeana 26(11), 942–947 (2013) [Atmospheric and Oceanic Optics 27 (2), 142–146 (2014)].

    Google Scholar 

  6. P. G. Kovadlo, V. P. Lukin, and A. Yu. Shikhovtsev, “Development of the Model of Turbulent Atmosphere at the Large Solar Vacuum Telescope Site as Applied to Image Adaptation,” Optika Atmosfery i Okeana 31(11), 906–910 (2018) [Atmospheric and Oceanic Optics 32 (2), 202–206 (2019)].

    Google Scholar 

  7. N. N. Botygina, O. N. Emaleev, P. A. Konyaev, et al., “Development of Components for Adaptive Optics Systems for Solar Telescopes,” Optika Atmosfery i Okeana 30(11), 990–997 (2017) [Atmospheric and Oceanic Optics 31 (2), 216–223 (2018)].

    Google Scholar 

  8. A. L. Rukosuev, A. V. Kudryashov, A. N. Lylova, et al., “Adaptive Optics System for Real-Time Wavefront Correction,” Optika Atmosfery i Okeana 28(2), 189–195 (2015) [Atmospheric and Oceanic Optics 28 (4), 381–386 (2015)].

    Google Scholar 

  9. R. J. Noll, “Zernike Polynomials and Atmosphere Turbulence,” JOSA 66(3), 207–211 (1976).

    Article  ADS  Google Scholar 

  10. L. V. Antoshkin, A. G. Borzilov, V. V. Lavrinov, and L. N. Lavrinova, “Program-Hardware Complex for Optical Beams Formation with Modeled Tilt Angels,” Proc. of SPIE 10466, 104660X (2017).

    Google Scholar 

  11. S. Yu. Bokalo, I. M. Bokashov, D. M. Lyakhov, et al., “Stabilization of Astronomic Images Using a Controlled Flat Mirror,” Avtometriya 54(1), 54–60 (2018) [Optoelectron., Instrum. Data Process. 54 (1), 46–51 (2018)].

    Google Scholar 

  12. A. N. Borshevnikov, D. A. Dement’yev, E. V. Leonov, et al., “Control of an Adaptive Optical System with Deformable Mirrors of Low and High Frequency Resolution,” Avtometriya 54(3), 119–125 (2018) [Optoelectron., Instrum., Data Process. 54 (3), 314–320 (2018)].

    Google Scholar 

  13. L. V. Antoshkin, V. V. Lavrinov, and L. N. Lavrinova, “Numerical Analysis of the Evolution of Phase Fluctuations of a Light Field at the Entrance Aperture of an Adaptive Optics System,” Optika Atmosfery i Okeana 29(11), 926–933 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Lavrinova.

Additional information

Russian Text © The Author(s), 2019, published in Avtometriya, 2019, Vol. 55, No. 6, pp. 117–125.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucherenko, M.A., Lavrinov, V.V. & Lavrinova, L.N. Reconstruction of a Wavefront Distorted by Atmospheric Turbulence with Account for Optical Scheme of the Telescope. Optoelectron.Instrument.Proc. 55, 631–637 (2019). https://doi.org/10.3103/S8756699019060153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699019060153

Keywords

Navigation