Skip to main content
Log in

Image Reconstruction from Digital Holograms Obtained by Specifying Random Phase Shifts

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A new method for image reconstruction from a series of digital holograms obtained by stepped phase shift with random values of phase shifts is under consideration. It is shown that images reconstructed from a digital hologram in a Fresnel region at a distance matching a distance from the object to the hologram consist of two parts, one of which is a clear image of the object and the other one being formed by incorrect phase shifts consists of a set of defocused images of the object. At the same time, the quality of the reconstructed image is slightly reduced. This effect eliminates the necessity to use precision systems for setting the phase shift and significantly reduces requirements for stabilizing the optical device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Goodman and R. W. Lawrence, “Digital Image Formation from Electronically Detected Holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).

    Article  ADS  Google Scholar 

  2. U. Schnars and W. Jüptner, “Direct Recording of Holograms by a CCD-Target and Numerical Reconstruction,” Appl. Opt. 33(2), 179–181 (1994).

    Article  ADS  Google Scholar 

  3. U. Schnars, “Direct Phase Determination in Hologram Interferometry with Use of Digitally Recorded Holograms,” JOSA A 11(7), 2011–2015 (1994).

    Article  ADS  Google Scholar 

  4. Digital Holography: Digital Hologram Recording, Numerical Reconstruction and Related Techniques, Ed. by U. Schnars and W. Jüptner (Springer, Berlin, 2005).

    Google Scholar 

  5. R. W. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a Hologram with a Computer,” Sov. J. Tech. Phys. 17(2), 333–334 (1972).

    Google Scholar 

  6. Ya. Leonid and M. Eden, Fundamentals of Digital Optics: Digital Signal Processing in Optics and Holography (Birkhäuser, Boston, 2006).

    Google Scholar 

  7. L. P. Yaroslavsky and N. S. Merzlyakov, Digital Hologrpahy (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  8. I. P. Gurov, “Controlled Phase Shift Based Computer Processing of Interference Signals,” Opticheskii Zh. 65(10), 38–42 (1998).

    Google Scholar 

  9. E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” JOSA 52(10), 1123–1130 (1962).

    Article  ADS  Google Scholar 

  10. S. A. Baltiiskii, I. P. Gurov, S. de Nikola, et al., “Modern Digital Holography Methods,” in Coherent and Nonlinear Optics Problems, Ed. by I. P. Gurov and S. A. Kozlov (Information Technologies, Mechanics and Optics University, Saint-Petersburg, 2004) [in Russian].

    Google Scholar 

  11. I. Yamaguchi and T. Zhang, “Phase-Shifting Digital Holography,” Opt. Lett. 22(16), 1268–1270 (1997).

    Article  ADS  Google Scholar 

  12. S. Lai, B. King, and M. A. Neifeld, “Wavefront Reconstruction by Means of Phase-Shifting Digital In-Line Holography,” Opt. Commun. 173(1–6), 155–160 (2000).

    Article  ADS  Google Scholar 

  13. S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Wave Front Reconstruction of Fresnel Off-Axis Holograms with Compensation of Aberrations by Means of Phase-Shifting Digital Holography,” Opt. Lasers Eng. 37(4), 331–340 (2002).

    Article  Google Scholar 

  14. V. I. Guzhov, S. P. Il’inykh, and S. V. Khaibullin, “Phase Information Recovery Based on the Methods of Phase Shifting Interferometry with Small Angles Between Interfering Beams,” Avtometriya 53(3), 101–106 (2017) [Optoelectron., Instrum. Data Process. 53 (3), 288–293 (2017)].

    Google Scholar 

  15. J. C. Wyant, “Interferometric Optical Metrology: Basic Principles and New Systems,” Laser Focus 18(5), 65–71 (1982).

    Google Scholar 

  16. P. Hariharan, B. F. Oreb, and N. Brown, “Digital Phase-Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41(6), 393–398 (1982).

    Article  ADS  Google Scholar 

  17. J. C. Wyant and K. Creath, “Recent Advances in Interferometric Optical Testing,” Laser Focus 21(11), 118–132 (1985).

    Google Scholar 

  18. V. I. Guzhov and S. P. Il’inykh, Optical Measurements. Computer Interferometry (Izd. Yurait, Moscow, 2018) [in Russian].

    Google Scholar 

  19. V. I. Guzhov, S. P. Il’inykh, D. S. Khaidukov, and A. R. Vagizov, “Universal Decoding Algorithm,” Nauch. Vestn. Nov. Gos. Tekh. Univ. 41(4) 51–58 (2010).

    Google Scholar 

  20. V. Guzhov, S. Ilinykh, R. Kuznetsov, and D. Haydukov, “Generic Algorithm of Phase Reconstruction in Phase-Shifting Interferometry,” Opt. Eng. 52(3), 030501 (2013).

    Article  ADS  Google Scholar 

  21. V. I. Guzhov and S. P. Il’inykh, “Generalized Algorithm for Decoding Interference Patterns with a Phase Shift,” Avtometriya 38(3), 123–126 (2002).

    Google Scholar 

  22. V. I. Guzhov, Computer Holography (Izd. Nov. Gos. Tekh. Univ., Novosibirsk, 2018) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Guzhov.

Additional information

Russian Text © The Author(s), 2019, published in Avtometriya, 2019, Vol. 55, No. 6, pp. 126–135.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzhov, V.I., Il’inykh, S.P., Pozdnyakov, G.A. et al. Image Reconstruction from Digital Holograms Obtained by Specifying Random Phase Shifts. Optoelectron.Instrument.Proc. 55, 638–646 (2019). https://doi.org/10.3103/S8756699019060165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699019060165

Keywords

Navigation