Skip to main content
Log in

Broadband Semiconductor Mirrors with a Small Relaxation Time for Passive Mode-Locking of NIR Lasers

  • Physical and Engineering Fundamentals of Microelectronics and Optoelectronics
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Two types of mirror structures with saturable absorption are under consideration: monolithic mirrors grown from semiconductor materials and mirrors with a dielectric reflector, with quantum well containing semiconductor structures transferred to the dielectric. Both types of mirrors manifest high reflectivity in the NIR range of the spectrum: the table width is about 100 nm for semiconductor reflectors and more than 200 nm for dielectric reflectors. It is shown that a maximum depth of absorption modulation from 1 to 40% is possible. The recovery time of the saturable absorber (2 ps) makes these mirrors significantly fit for using in lasers with a pulse repetition rate of 1 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Keller, K. J. Weingarten, F. X. Kärtner, et al., “Semiconductor Saturable Absorber Mirrors (SESAMs) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers,” IEEE J. Sel. Top. Quant. Electron. 2 (3), 435–453 (1996).

    Article  ADS  Google Scholar 

  2. D. J. H. C. Maas, A.-R. Bellancourt, M. Hoffmann, et al., “Growth Parameter Optimization for Fast Quantum Dot SESAMs,” Opt. Express. 16 (23), 18646–18656 (2008).

    Article  ADS  Google Scholar 

  3. A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, et al., “115 fs Pulses from Yb3+:KY(WO4)2 Laser with Low Loss Nanostructured Saturable Absorber,” Laser Phys. Lett. 8 (6), 431–435 (2011).

    Article  ADS  Google Scholar 

  4. S. Pekarek, C. Fiebig, M. C. Stumpf, et al., “Diode-Pumped Gigahertz Femtosecond Yb:KGW Laser with a Peak Power of 3.9 kW,” Opt. Express. 18 (16), 16320–16326 (2010).

    Article  ADS  Google Scholar 

  5. S. A. Kuznetsov, V. S. Pivtsov, A. V. Semenko, and S. N. Bagayev, “Highly Efficient Multimode Diode-Pumped Yb:KYW Laser,” J. Phys.: Conf. Ser. 793 (1), 012016 (2017).

    Google Scholar 

  6. G. M. Borisov, V. G. Gol’dort, A. A. Kovalyov, et al., “Femtosecond Kinetics of Reflection of Mirrors with Saturable Absorption,” Avtometriya 52 (2), 52–56 (2016) [Optoelectron., Instrum. Data Process. 52 (2), 148–152 (2016)].

    Google Scholar 

  7. G. M. Borisov, V. G. Gol’dort, A. A. Kovalev, et al., “Technique for Detecting Sub-Picosecond Reflection and Transmission Kinetics,” Pribory i Tekhnika Eksperimenta, No. 1, 87–91 (2018).

    Google Scholar 

  8. G. M. Borisov, V. G. Gol’dort, A. A. Kovalev, et al., “Reflection Kinetics of a Semiconductor Fast-Speed Mirror,” Sibirskii Fizicheskii Zh. 12 (3), 109–115 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Rubtsova.

Additional information

The authors are grateful to the staff of the ILP SB RAS V. S. Pivtsov, S. A. Kuznetsov, and A. V. Semenko for testing results for mirrors with saturable absorption in a Yb3+:KY(WO4)2 laser.

This paper was financially supported by the Russian Foundation for Basic Research (Grants No. 18-29-20007 and 18-42-543001).

Russian Text © The Author(s), 2019, published in Avtometriya, 2019, Vol. 55, No. 5, pp. 20–23.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubtsova, N.N., Borisov, G.M., Gol’dort, V.G. et al. Broadband Semiconductor Mirrors with a Small Relaxation Time for Passive Mode-Locking of NIR Lasers. Optoelectron.Instrument.Proc. 55, 437–440 (2019). https://doi.org/10.3103/S8756699019050030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699019050030

Keywords

Navigation