Skip to main content
Log in

Substantiation of Experimentally Observed Self-Accommodation Complexes of Martensite Crystals in Alloys with Shape Memory Effects

  • Condensed Matter Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

This paper presents an algorithm for analyzing the possibility of the formation of self-accommodation complexes of martensite crystals in alloys with shape memory effects with consideration for twinning and minimization of the strain averaged over a corresponding set of domains. It has been shown that complete self-accommodation is possible only in the complexes that simultaneously contain all the orientation relationship variants. The calculation performed for the case of rhombohedral martensite (four possible orientation relationship variants) has demonstrated that there is no average shape strain in the four domains. The thus-formed four-domain complex incorporates all the possible variants of the orientation relationship and, for this reason is a self-accommodation complex. Such complexes have been repeatedly observed in titanium nickelide alloys. The analysis of monoclinic 18R-martensite shows that complete self-accommodation can be attained only in the complex of 12 different domains. The experimentally observed four-domain complexes in the Cu—Al—Ni and Cu—Al—Mn alloys can be explained by partial self-accommodation, which takes the exposure of a martensite crystal on the outer surface of a crystal into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Otsuka and C. M. Wayman, Shape Memory Materials (Cambridge Univ. Press, 1998).

  2. V. A. Lobodyuk and E. I. Estrin, Martensitic Transformations (Fizmatlit, Moscow, 2009).

    Google Scholar 

  3. A. G. Khundjua, E. A. Brovkina, M. M. Melnikov, and A. G. Ptitsin, Moscow Univ. Phys. Bull. 69, 529 (2014).

    Article  ADS  Google Scholar 

  4. A. G. Khundjua, A. G. Ptitsyn, and E. A. Brovkina, Moscow Univ. Phys. Bull. 73, 101 (2018). https://doi.org/10.3103/S0027134914060101

    Article  ADS  Google Scholar 

  5. A. G. Khundzhua, A. G. Ptitsyn, E. A. Brovkina, and S. Chzhen, Phys. Met. Metallogr. 113, 1035 (2012). https://doi.org/10.1134/S0031918X12110117

    Article  ADS  Google Scholar 

  6. A. G. Khundzhua, E. A. Brovkina, and S. Chzhen, Perspekt. Mater., No. 6, 12 (2010).

  7. Titanium Nickelide Memory Alloys,Vol. 1: Structure, Phase Transformation, and Properties, Ed. by V. G. Pushin (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2006).

    Google Scholar 

  8. T. Fukuda, T. Saburi, K. Doi, and S. Nenno, Mater. Trans. 33, 271 (1992).

    Article  Google Scholar 

  9. S. Miyazaki, Shape Mem. Superelasticity 3, 279 (2017).

    Article  Google Scholar 

  10. K. Otsuka, K. Shimizu, Y. Suzuki, et al., Shape Memory Alloys (Kyoto, 1984; Metallurgiya, Moscow, 1990).

    Google Scholar 

  11. T. Shusong and X. Huibin, Continuum Mech. Thermodyn. 2, 241 (1990).

    Article  Google Scholar 

  12. U. Sari and I. Aksoy, J. Mater. Process. Technol. 195, 72 (2008).

    Article  Google Scholar 

  13. U. S. Mallik and V. Sampath, Mater. Sci. Eng. A 481–482, 680 (2008).

    Article  Google Scholar 

  14. E. Aldirmaz and I. Aksoy, Arabian J. Sci Eng. 39, 575 (2014).

    Article  Google Scholar 

  15. M. Nishida, T. Nishiura, H. Kawano, and T. Inamura, Philos. Mag. 92, 2215 (2012).

    Article  ADS  Google Scholar 

  16. M. Nishida, E. Okunishi, T. Nishiura, et al., Philos. Mag. 92, 2234 (2012).

    Article  ADS  Google Scholar 

  17. T. Inamura, T. Nishiura, H. Kawano, et al., Philos. Mag. 92, 2247 (2012).

    Article  ADS  Google Scholar 

  18. P. S. Aleksandrov, Analytical Geometry and Linear Algebra (St. Petersburg, 2009).

  19. U. Sari, Int. J. Miner., Metall. Mater. 17, 192 (2010).

    Article  Google Scholar 

  20. K. Otsuka and X. Ren, Prog. Mater. Sci. 50, 511 (2005).

    Article  Google Scholar 

  21. Y. Soejima, S. Motomura, M. Mitsuhara, et al., Acta Mater. 103, 352 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Khundjua or E. A. Brovkina.

Additional information

Russian Text © The Author(s), 2019, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2019, No. 6, pp. 75–80.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khundjua, A.G., Brovkina, E.A., Ptitsin, A.G. et al. Substantiation of Experimentally Observed Self-Accommodation Complexes of Martensite Crystals in Alloys with Shape Memory Effects. Moscow Univ. Phys. 74, 650–656 (2019). https://doi.org/10.3103/S0027134919060171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134919060171

Keywords

Navigation