Skip to main content
Log in

X-Ray Transmission through Infinite Dielectric Wedge-Shaped Objects

  • Condensed Matter Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The problem of transmission and reflection of X-rays (0.1 Å ≤ λ ≤ 10 Å) from an infinite amorphous homogeneous wedge-shaped dielectric plate has been analytically solved. The obtained solution is a “zero” step in solving the problem of X-ray diffraction on a semi-infinite amorphous homogeneous dielectric wedge within the heuristic geometric diffraction theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1964).

    MATH  Google Scholar 

  2. M. A. Andreeva and R. N. Kuz’min, Mössbauer and X-Ray Surface Optics (Moscow, 1996).

  3. M. A. Andreeva, S. F. Borisova, and S. A. Stepanov, Poverkhn.: Fiz., Khim., Mekh., No. 4, 5 (1985).

  4. L. G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  ADS  Google Scholar 

  5. A. V. Kolpakov, Dynamic X-Ray Diffraction (Mosk. Gos. Univ., Moscow, 1989).

    Google Scholar 

  6. I. R. Prudnikov, Phys. Status Solidi (B) 217, 725 (2000).

    Article  ADS  Google Scholar 

  7. S. A. Stepanov, E. A. Kondrashkina, R. Koehler, et al., Phys.Rev.B 57, 4829 (1998).

    Article  ADS  Google Scholar 

  8. S. A. Stepanov and S. K. Sinha, Phys. Rev. B 61, 15302 (2000).

    Article  ADS  Google Scholar 

  9. V. A. Bushuev and A. P. Oreshko, Poverkhnost, No. 1, 67 (2002).

  10. A. P. Oreshko and V. A. Bushuev, Moscow Univ. Phys. Bull. 58(5), 49 (2003).

    Google Scholar 

  11. E. E. Odintsova and M. A. Andreeva, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 4, 913 (2010).

    Article  Google Scholar 

  12. M. A. Andreeva, R. A. Baulin, and Y. L. Repchenko, J. Synchrotron Radiat. 26, 483 (2019).

    Article  Google Scholar 

  13. I. V. Kozhevnikov, Doctoral Dissertation in Mathematics and Physics (Shubnikov Inst. of Crystallography, Russ. Acad. Sci., Moscow, 2013).

    Google Scholar 

  14. A. Sommerfeld, Math. Ann. 47, 317 (1896).

    Article  MathSciNet  Google Scholar 

  15. A. F. Kryachko, V. M. Likhachev, S. N. Smirnov, and A. I. Stashkevich, Theory of Scattering of Electromagnetic Waves in Angular Structures (Nauka, St. Petersburg, 2009).

    Google Scholar 

  16. E. I. Nefedov, Diffraction of Electromagnetic Waves on Dielectric Structures (Nauka, Moscow, 1979).

    Google Scholar 

  17. V. A. Borovikov and B. E. Kinber, Geometric Diffraction Theory (Svyaz’, Moscow, 1978).

    Google Scholar 

  18. G. Gennarelli and G. Riccio, Int. J. Antennas Propag. 2012, 151287 (2012).

    Google Scholar 

  19. E. N. Vasil’ev and V. V. Solodukhov, Radiophys. Quantum Electron. 17, 1161 (1974).

    Article  ADS  Google Scholar 

  20. E. N. Vasil’ev and V. V. Solodukhov, Preprint No. 25 (397) (Inst. of Radio Engineering and Electronics, USSR Acad. Sci., Moscow, 1984).

  21. J. F. Rouviere, N. Douchin, and P. F. Combes, IEEE Trans. Antennas Propag. 47, 1702 (1999).

    Article  ADS  Google Scholar 

  22. A. A. Komarov, Candidate’s Dissertation in Engineering (Moscow Power Engineering Inst., Moscow, 2013).

    Google Scholar 

  23. A. G. Shabalin, O. M. Yefanov, V. L. Nosik, et al., Phys. Rev. B 96, 064111 (2017).

    Article  ADS  Google Scholar 

  24. S. I. Kolosov, Candidate’s Dissertation in Mathematics and Physics (Komi Science Centre, Russ. Acad. Sci., Syktyvkar, 2015).

    Google Scholar 

  25. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1992).

    Google Scholar 

  26. V. A. Kizel’, Re flection of Light (Nauka, Moscow, 1973).

    Google Scholar 

  27. F. Goos and H. Lindberg-Hänchen, Ann. Phys. 436, 333 (1947).

    Article  Google Scholar 

  28. L. M. Brekhovskikh, Usp. Fiz. Nauk 50, 539 (1953).

    Article  Google Scholar 

  29. K. Artmann, Ann. Phys. 437, 87 (1948).

    Article  Google Scholar 

  30. V. A. Bushuev and A. I. Frank, Phys.-Usp. 61, 952 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported in part by the Russian Foundation for Basic Research, project nos. 19-02-00483 and 19-52-12029. The work was carried out using the equipment of the Center for Collective Use of Super High-Performance Computing Resources of the Moscow State University and the collective use center Complex for Modeling and Data Processing of Mega-Class Research Facilities of the Kurchatov Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Oreshko.

Additional information

Russian Text © The Author(s), 2019, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2019, No. 6, pp. 81–84.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oreshko, A.P. X-Ray Transmission through Infinite Dielectric Wedge-Shaped Objects. Moscow Univ. Phys. 74, 657–661 (2019). https://doi.org/10.3103/S0027134919060213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134919060213

Keywords

Navigation