Skip to main content
Log in

Thermodynamic Properties and Phase Equilibria in the H2O–HNO3–UO2(NO3)2 System

  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

A set of Pitzer interaction parameters is proposed to describe thermodynamic properties of the H2O–UO2(NO3)2–HNO3 solution within the temperature range of 15 to 50°C and ranges of concentrations of HNO3 and UO2(NO3)2 of 0 to 40 and 0 to 8 mol/kg, respectively. The experimental data on the vapor pressures of the volatile components of the system, degree of dissociation of nitric acid, and solid–liquid equilibria are used to determine these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Clegg, S.L., Activity Coefficients in Electrolyte Solutions, Boca Raton, FL: CRC, 2018.

    Google Scholar 

  2. Lach, A., André, L., Guignot, S., et al., J. Chem. Eng. Data, 2018, vol. 63, no. 3, p. 787.

    Article  CAS  Google Scholar 

  3. Wilson, G.L. and Miles, F.D., Trans. Faraday Soc., 1940, vol. 35, no. 356, p. 356.

    Article  Google Scholar 

  4. Filippov, V.K., Ki, T., and Yakimov, M.A., Zh. Prikl. Khim., 1969, vol. 42, no. 4.

  5. Yakimov, M.A. and Mishin, V.Ya., Radiokhimiya, 1964, vol. 6, p. 543.

    CAS  Google Scholar 

  6. Flatt, R. and Benguerel, F., Helv. Chim. Acta, 1962, vol. 45, no. 6, p. 1765.

    Article  CAS  Google Scholar 

  7. Burdick, C.L. and Freed, E.S., J. Am. Chem. Soc., 1921, vol. 43, p. 518.

    Article  CAS  Google Scholar 

  8. Haase, R., Ducker, K.H., and Kuppers, H.A., Ber. Bunsen-Ges., 1965, vol. 69, no. 2, p. 97.

    Article  CAS  Google Scholar 

  9. Moiseev, A.E., Dzuban, A.V., Gordeeva, A.S., et al., J. Chem. Eng. Data, 2016, vol. 61, no. 9, p. 3295.

    Article  CAS  Google Scholar 

  10. Davis, W. and De Bruin, H.J., J. Inorg. Nucl. Chem., 1964, vol. 26, no. 6, p. 1069.

    Article  CAS  Google Scholar 

  11. Tang, I.N., Munkelwitz, H.R., and Lee, J.H., Atmos. Environ., 1988, vol. 22, no. 11, p. 2579.

    Article  CAS  Google Scholar 

  12. Lemire, R.J., Brown, C.P., and Campbell, A.B., J. Chem. Eng. Data, 1985, vol. 30, no. 4, p. 421.

    Article  CAS  Google Scholar 

  13. Hood, G.C., Redlich, O., and Reilly, C.A., J. Chem. Phys., 1954, vol. 22, no. 12, p. 2067.

    Article  CAS  Google Scholar 

  14. Redlich, O. and Nielsen, L.E., J. Am. Chem. Soc., 1943, vol. 65, no. 4, p. 654.

    Article  CAS  Google Scholar 

  15. Goldberg, R.N., J. Phys. Chem. Ref. Data, 1979, vol. 8, no. 4, p. 1005.

    Article  CAS  Google Scholar 

  16. Benrath, A., Z. Anorg. Allg. Chem., 1942, vol. 249, no. 3, p. 245.

    Article  CAS  Google Scholar 

  17. Marshall, W.L., Gill, J.S., and Secoy, C.H., J. Am. Chem. Soc., 1951, vol. 73, no. 4, p. 1867.

    Article  CAS  Google Scholar 

  18. Apelblat, A. and Korin, E., J. Chem. Thermodyn., 1998, vol. 30, no. 4, p. 459.

    Article  CAS  Google Scholar 

  19. Davis, W., Jr., Lawson, P.S., de Bruin, H.J., J. Phys. Chem., 1965, vol. 69, no. 6, p. 1904.

    Article  CAS  Google Scholar 

  20. Leclaire, N.P., Anno, J.A., Courtois, G., et al., Nucl. Technol., 2003, vol. 144, no. 3, p. 303.

    Article  CAS  Google Scholar 

  21. Volk, V.I., Arseenkov, L.V., Veselov, S.N., et al., At. Energy, 2018, vol. 124, no. 5, p. 315.

    Article  CAS  Google Scholar 

  22. Gaunt, J., Bastien, I.J., and Adelman, M., Can. J. Chem., 1963, vol. 41, no. 2, p. 527.

    Article  CAS  Google Scholar 

  23. Pitzer, K.S. and Simonson, J.M., J. Phys. Chem., 1986, vol. 90, no. 13, p. 3005.

    Article  CAS  Google Scholar 

  24. Gianguzza, A., Milea, D., Millero, F.J., et al., Mar. Chem., 2004, vol. 85, nos. 3–4, p. 103.

    Article  CAS  Google Scholar 

  25. Kim, H.T. and Frederick, W.J., J. Chem. Eng. Data, 1988, vol. 33, no. 2, p. 177.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-29-24167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Maliutin.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ADDITIONAL INFORMATION

There is no additional information.

Additional information

Translated by E. Boltukhina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maliutin, A.S., Kovalenko, N.A. & Uspenskaya, I.A. Thermodynamic Properties and Phase Equilibria in the H2O–HNO3–UO2(NO3)2 System. Moscow Univ. Chem. Bull. 75, 65–71 (2020). https://doi.org/10.3103/S0027131420020091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131420020091

Keywords:

Navigation