Skip to main content
Log in

Purification Performance of Typha Latifolia, Juncus Effusus and Papyrus Cyperus in Arid Climate: Influence of Seasonal Variation

  • Biological Methods of Water Treatment
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2020

This article has been updated

Abstract

The purification of wastewater through the use of the plants (phytoepuration) was used in different areas and under various climates; it was tested successfully for organic pollution, for the elimination of phosphorus pollution, nitrogen pollution, metals, and for the destruction of the pathogenic germs. This study reports the monitoring of purifying performances of three plants, which show a good acclimatization in arid climate: Typha latifolia, Juncus effusus and Cyperus papyrus. The monitoring was carried out during one year from December to November in the southern Algeria. The experimental pilot set-up consists of four plastic barrels capacity of 130 L, filled from the bottom upwards to 45 cm thickness by gravel and 10 cm by sand, with opening located at 5 cm below the sand to avoid any overflow of water. Three barrels were planted with young stems of the studied species with the coverage of 36 stems/m2, and the fourth barrel remained unplanted to serve as reference object. 30 L of wastewater which have undergone primary treatment at the purification station of Kouinine (north the town of El-Oued) was supplied to each barrel once a week. The flow occurred by percolation through the substrate. The residence time of water is 5 days. Treated water is recovered by a tap placed in bottom of the barrel. With the three tested plants, very satisfactory outputs were obtained for particulate and organic pollution, where the decrease rates of reached 96% for suspended matter (SM), 89% for the Chemical Oxygen Demand (COD), and 87% for the Biological Oxygen Demand (BOD5). The elimination of nitrogen and phosphorous pollution resulted in decreasing rates of 94% for nitrates and 95% for orthophosphates. The planted bed of Juncus effusus gives the best outputs for the elimination of organic and nitrogen pollution. However, the planted bed of Cyperus papyrus is the most appropriate for the phosphorous pollution. In addition, the elimination of the organic pollutants decreases in summer; never the less the output of purification remains higher than 68% for all seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 08 October 2020

    erratum

References

  1. Kouakou, J., Développement d’une zone humide simulée plantée avec Amaranthacea et Capri: Aridacea pour le traitement des eaux usées domestiques, Rapport de African Technology Policy Studies Network (ATPS), 2008.

  2. Achak, M., Ouazzani, N., and Mandi, L., Elimination des polluants organiques des effluents de l’industrie oléicole par combinaison d’un filtre à sable et un lit planté, Rev. Sci. Eau., 2011, vol. 24(1), pp. 35–51.

    CAS  Google Scholar 

  3. Calheiros, C.S.C., Rangel, A.O.S.S., and Castro, P.M.L., Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater, Water Res., 2007, vol. 41, pp. 1790–1798.

    Article  CAS  Google Scholar 

  4. Finlayson, C.M. and Chick, A.J., Testing the potential of aquatic plants to treat abattoir effluent, Water Res., 1983, vol. 17(4), pp. 415–422.

    Article  CAS  Google Scholar 

  5. Grismer, M. and Shepherd, H.L., Plants in constructed wetlands help to treat agricultural processing wastewater, Californie Agriculture, 2011, vol. 65(2), pp. 73–79.

    Article  Google Scholar 

  6. Tanner, C.C., Sukias, J.P., and Upsdell, M.P., Organic matter accumulation during maturation of gravel-bed constructed wetlands treating farm dairy wastewaters, Water Res., 1998, vol. 32(10), pp. 3046–3054.

    Article  CAS  Google Scholar 

  7. Nelson, M., Finn, M., Wilson, C., Zabel, B., Thillo, M.V., Hawes, P., and Fernandez, R., Bioregenerative recycling ofwastewater in biosphere 2 using a constructed wetland: 2-year results, Ecol. Eng., 1999, vol. 13, pp. 189–197.

    Article  Google Scholar 

  8. Benredjel, F. and Ghoualem, H., Contribution à la caractérisation physico-chimique des eaux de pluie de la région de Tizi-Ouzou. Traitement par filtres plantés, Larhyss J., 2015, vol. 23, pp. 41–52.

    Google Scholar 

  9. Taylor, C.R., Hook, P.B., Stein, O.R., and Zabinski, C.A., Seasonal effects of 19 plant species on COD removal in subsurface treatment wetland microcosms, Ecol. Eng., 2011, vol. 37, pp. 703–710.

    Article  Google Scholar 

  10. Seghairi, N., Mimeche, L., Debabeche, M., and Khider, S., Possibilités d’élimination des phosphates et de l’azote à partir des eaux usées domestiques en utilisant un filtre planté de papyrus, The 4 Int. Congress “Water, Waste end Environment” [EDE4] (Agadir, Morocco, december, 2013), Agadir, 2013.

  11. Tsalandzomo, G., Omokolondoumou, D., and Tita Awah, M., Effect of Fe2+, Mn2+, Zn2+ and Pb2+ on H+/K+ fluxes in excised Pistia stratiotes roots, Biol. Plantarum, 1994, vol. 36(4), pp. 591–597.

    Google Scholar 

  12. Seghairi, N., Mimeche, L., Debabeche, M., and Hamzaoui, A., Elimination du cuivre présent dans les eaux usées industrielles sur un filtre planté de Tamarix, Courrier du Savoir, 2013a, vol. 15, pp. 53–57.

    Google Scholar 

  13. Brix, H., Use of constructed wetlands in water pollution control: historical development, present status, and future perspectives, Water. Sci. and Technol., 1994, vol. 30(8), pp. 209–223.

    Article  CAS  Google Scholar 

  14. Hafouda, L., Hadad, M., Arif, Y., Djafri, K., Balleche, O., and Talab, B., Suivi agronomique de l’unité pilote d’épuration des eaux usées par zone humide artificielle vieux ksar de Témacine, Rapport de de l’institut National de Recherche Agronomique de l’Algérie (INRAA), 2010.

  15. Badri, A., Naceur, M. W., Maazouzi, A., Kettab, A., and Zahraoui, B., Contribution à l’étude bioremédiation d’ammonium et nitrate par imprata cylindrica, 1er Séminaire Int. sur la Ressource en eau au Sahara (Ouargla, 2011).

  16. Benslimane, M., Mostephaoui, T., Hamimed, A., and Cherif, Z.T., Performances épuratoires et interêt du procédéé de phytotraitement des eaux usées par végétaux macrophytes, Courrier du Savoir, 2013, vol. 17(Décembre), pp. 47–51.

    Google Scholar 

  17. Brix, H., Treatment of wastewater in the rhizosphere of wetland plants- the root-zone method, Water. Sci. and Technol., 1987, vol. 19, pp. 107–118.

    Article  CAS  Google Scholar 

  18. Brix, H. and Schierup, H., Soil oxygenation in constructed reed beds: the role of macrophyte and soil-atmosphere interface oxygen transport, Constructed Wetlands in Water Pollution Control, 1990, pp. 53–66.

  19. Mimeche, L., Etude de faisabilité de l’installation de station d’épuration des rejets urbains par les filtres plantés en milieu aride—application á la Région de Biskra, Thése de doctorat en sciences présentée d l’université de Biskra, 2014.

  20. Bensmina, L.M., Mancer, H., and Debabeche, M., Analyse du pouvoir épuratoire d’un filtre implanté de phragmite australis pour le traitement des eaux usées sous-Climat Semi-Aride—Région de Biskra, J. Int. Environ. Conflict Management, 2010, vol. 1(1), pp. 10–15.

    Google Scholar 

  21. Coleman, J., Hench, K., Garbutt, K., Sexstone, A., Bissonnette, G., and Skousen, F., Treatment of domestic wastewater by three plant species in constructed wetlands, Water, Air and Soil Pollut., 2001, vol. 128, pp. 283–295.

    Article  CAS  Google Scholar 

  22. Oertzen, I.V. and Finlayson, C.M., Wastewater treatment with aquatic plants: ecotypic differentiation of Typhadomingensis Seedlings., Environ. Pollut. A, 1984, vol. 35, pp. 259–269.

    Article  Google Scholar 

  23. Nelson, M., Cattin, F., Rajendran, M., and Hafouda, L., Value-adding through creation of high diversity gardens and ecoscapes in subsurface flow constructed wetlands: Case studies in Algeria and Australia of Wastewater Gardens systems, 2th Int. Conf. on Wetland Systems for Water Pollution Control, 2008.

  24. Vincent, G., Dallaire, S., and Lanzer, D., Antimicrobial propertties of roots exudates of three macrophytes: Menthaaquatica L., Phragmites australis (Cav.) Tri. An Scirpus lacustris L. Proc. of 4th Int. Conf. on Wetlands Systems for Water Pollut. Control, 1994.

  25. Ranjani, K., Kneidinger, C.H., Rios, R., Salinas, N., Soto, G. and Duran-De-Bazua, C., Treatment of maize processing industry wastewater by constructed wetlands, Proc. of 5th Int. Conf. on Wetlands System for Water Pollut. Control., 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bebba.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bebba, A.A., Labed, I., Zeghdi, S. et al. Purification Performance of Typha Latifolia, Juncus Effusus and Papyrus Cyperus in Arid Climate: Influence of Seasonal Variation. J. Water Chem. Technol. 41, 396–401 (2019). https://doi.org/10.3103/S1063455X19060092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X19060092

Keywords

Navigation