Skip to main content
Log in

The Effect of Physicochemical Parameters on the Process of Water Disinfection Using Chitosan

  • Water Treatment and Demineralization Technology
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

Increasing demands to the quality of drinking water necessitate the search for environmentally friendly and effective methods of its disinfection and purification. The purpose of this work was to study the disinfecting activity of chitosan (ChTS) obtained from natural polymer chitine in relation to E. coli and C. albicans depending on the physicochemical parameters of medium. It has been established that the degree of inactivation of E. coli culture does not depend on the type of ChTS used in this study: high-molecular ChTS1 (molecular weight (Mw) = 100–300 kDa) and low-molecular ChTS2 (Mw = 50–60 kDa) with the deacetylation degree of 95 and 75–85%, respectively. In the case of C. albicans, high-molecular weight ChTS with deacetylation degree of 95% is a more effective disinfecting agent. The highest degree of C. albicans inactivation by using ChTS1 is achieved in a weak acid medium (pH 5.0), while at pH 8.5 the disinfecting effect is negligible. For the first time, a significant contribution of the process of flocculation of microorganisms by chitosan to the total effect of water disinfection has been shown that is especially pronounced at relatively short contact periods (< 1 h) of the culture with chitosan. It is shown that the presence of impurities of an organic and inorganic nature in water reduces both the disinfecting and flocculating effects of polysaccharide in relation to the microbiological objects. It is, probably, associated with the competing activity of these impurities on the interaction of ChTS molecules with microorganisms. The attained results confirm that C. albicans is a more reliable test object of disinfection processes as compared to E. coli that is of practical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Unuabonah, E.I., Adewuyi, A., Kolawole, M.O., Omorogie, M.O., Olatunde, O.C., Fayemi, S.O., and Taubert, A., Disinfection of water with new chitosan-modified hybrid clay composite adsorbent, Heliyon, 2017, no. 3(8), e00379. doi:https://doi.org/10.1016/j.heliyon.2017.e00379.

    Article  Google Scholar 

  2. Qin, C., Li, H., Xiao, Q., Liu, Yi., Zhu, J., and Du, Yu., Water solubility of chitosan and its antimicrobial activity, Carbohydrate Polymers, 2006, no. 63, pp. 367–373.

    Article  CAS  Google Scholar 

  3. Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D., and Alvarez, P.J., Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications, Water Res., 2008. vol. 42(18), pp. 4591–4602. doi:https://doi.org/10.1016/j.watres.2008.08.015.

    Article  CAS  Google Scholar 

  4. Fabris, R., Chow, C.W., and Drikas, M., Evaluation of chitosan as a natural coagulant for drinking water treatment, Water Sci. and Technol., 2010, vol. 61, no. 8, pp. 2119–2128. doi:https://doi.org/10.2166/wst.2010.833.

    Article  CAS  Google Scholar 

  5. Abebe, L., Chen, X., and Sobsey, M., Chitosan coagulation to improve microbial and turbidity removal by ceramic water filtration for household drinking water treatment, Int. J. Environ. Res. and Public Health, 2016, vol. 13, no. 3, pp. 269. doi:https://doi.org/10.3390/ijerph13030269.

    Article  Google Scholar 

  6. Yang, R., Li, H., Huang, M., Yang, H., and Li, A., A review on chitosan-based flocculants and their applications in water treatment, Water Res., 2016, vol. 95, pp. 59–89. doi:https://doi.org/10.1016/j.watres.2016.02.068.

    Article  CAS  Google Scholar 

  7. Kangama, A., Zeng, D., Tian, X., and Fang, J., Application of chitosan composite flocculant in tap water treatment, J. Chem., 2018, no. 1–9. doi:https://doi.org/10.1155/2018/2768474.

    Article  Google Scholar 

  8. Zeng, D., Wu, J., and Kennedy, J.F., Application of a chitosan flocculant to water treatment, Carbohydrate Polymers, 2008, vol. 71, no. 1, pp. 135–139. doi:https://doi.org/10.1016/j.carbpol.2007.07.039.

    Article  CAS  Google Scholar 

  9. Frederick, W., Pontius chitosan as a drinking water treatment coagulant, Amer. J. Civil Engineering, 2016, vol. 4, issue 5, pp. 205–215.

    Article  Google Scholar 

  10. Kong, M., Chen, X.G., Xing, K., and Park, H.J., Antimicrobial properties of chitosan and mode of action: a state of the art review, Int. J. Food Microbiol., 2010, vol. 144, no. 1, pp. 51–63. doi:https://doi.org/10.1016/j.ijfoodmicro.2010.09.012.

    Article  CAS  Google Scholar 

  11. Tymchuk, A.F and Grubnyak, A.E., Vliyanie prirodnykh i sinteticheskikh flokulyantov na sedimentatsionnuyu ustoichivost’ suspenzii, Visnyk ONU. Khimiya, 2017, vol. 22, no. 2 (62), pp. 71–81.

    CAS  Google Scholar 

  12. Kong, M., Chen, X.G., Liu, C.S., Liu, C.G., Meng, X.H., and Yu, L.J., Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. Coli, Colloids and Surfaces. B: Biointerfaces, 2008, vol. 65, no. 2, pp. 197–202. doi:https://doi.org/10.1016/j.colsurfb.2008.04.003.

    CAS  Google Scholar 

  13. Goy, R.C., Britto, D., and Assis, O.B.G., A review of the antimicrobial activity of chitosan, Polimeros, 2009, vol. 19, no. 3, pp. 241–247. doi: https://doi.org/10.1590/s0104-14282009000300013.

    Article  CAS  Google Scholar 

  14. Raafat, D., von Bargen, K., Haas, A., and Sahl, H.-G., Insights into the mode of action of chitosan as an antibacterial compound, Applied and Environ. Microbiol., 2008, vol. 74, no. 12, pp. 3764–3773. doi:https://doi.org/10.1128/aem.00453-08.

    Article  CAS  Google Scholar 

  15. Chung, Y.-C. and Chen, C.-Y., Antibacterial characteristics and activity of acid-soluble chitosan, Bioresource Technol., 2008, vol. 99, no. 8, pp. 2806–2814. doi:https://doi.org/10.1016/j.biortech.2007.06.044.

    Article  CAS  Google Scholar 

  16. Eaton, P., Fernandes, J.C., Pereira, E., Pintado, M.E., and Xavier Malcata, F., Atomic force microscopy study of the antibacterial effects of chitosans on escherichia coli and staphylococcus aureus, Ultramicroscopy, 2008, vol. 108, no. 10, pp. 1128–1134. doi:https://doi.org/10.1016/j.ultramic.2008.04.015.

    Article  CAS  Google Scholar 

  17. Helander, I., Nurmiaho-Lassila, E.-L., Ahvenainen, R., Rhoades, J., and Roller, S., Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria, Int. J. Food Microbiol., 2001, vol. 71, no. 2–3, pp. 235–244. doi: https://doi.org/10.1016/s0168-1605(01)00609-2.

    Article  CAS  Google Scholar 

  18. Liu, H., Du, Y., Wang, X., and Sun, L., Chitosan kills bacteria through cell membrane damage, Int. J. Food Microbiol., 2004, vol. 95, no. 2, pp. 147–155. doi:https://doi.org/10.1016/j.ijfoodmicro.2004.01.022.

    Article  CAS  Google Scholar 

  19. Li, J., Jiao, S., Zhong, L., Pan, J., and Ma, Q., Optimizing coagulation and flocculation process for kaolinite suspension with chitosan, Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2013, vol. 42, no. 8, pp. 100–110. doi:https://doi.org/10.1016/j.colsurfa.2013.03.034.

    Article  CAS  Google Scholar 

  20. Goncharuk, V.V., Potapchenko, N.G., Kosinova, V.N., and Sova, A.N., Khimiya i Tekhnol. Vody, 2001, vol. 23, no. 4, pp. 427–438.

    Google Scholar 

  21. Grigor’eva, L.V., ed., Spravochnik po sanitarnoi mikrobiologii (Reference Book on Sanitary Microbiology), Chisinau: Kartya Moldovenyaske, 1981.

    Google Scholar 

  22. Goncharuk, V.V., Potapchenko, N.G., Vakulenko V.F., et al., Obezzarazhivanie vody ozonom i UF oblucheniem sovmestno v protochnom rezhime (Water Disinfection by Combined Action of Ozone and UV Irradiation at the Flow-Through Mode), Khimiya i Tekhnol. Vody, 2008, vol. 30, no. 1, pp. 91–105.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Saprykina.

Additional information

Russian Text © The Author(s), 2019, published in Khimiya i Tekhnologiya Vody, 2019, vol. 41, no. 6, pp. 630–640.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saprykina, M.N., Bolgova, E.V., Mel’nik, L.A. et al. The Effect of Physicochemical Parameters on the Process of Water Disinfection Using Chitosan. J. Water Chem. Technol. 41, 384–390 (2019). https://doi.org/10.3103/S1063455X19060079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X19060079

Keywords

Navigation