Skip to main content
Log in

The Conductivity of the Monolayer of DNA — Quantum Dot Complexes in the Presence of Intercalating Charged Ligands

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The resistance of a monolayer of complexes of the double-stranded DNA with quantum dots were computed. It was shown that with the non-competitive DNA hybridization and in the presence of monovalent positively charged ligands in the solution, a decrease in resistance occurs as compared to that for uncharged ligands. It is shown that the charged ligands enhance the sensitivity of the DNA chips as compared to the uncharged ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivnitski, D., Abdel-Hamid, I., Atanasov, P., and Wilkins, E., Biosensors and Bioelectronics, 1999, vol. 14, p. 599.

    Article  Google Scholar 

  2. Labuda, J., Brett, A.M.O., Evtugyn, G., Fojta, M., Mascini, M., Ozsoz, M., Palchetti, I., Paleček, E., and Wang, J., Pure Appl. Chem., 2010, vol. 82, p. 1161.

    Article  Google Scholar 

  3. Watterson, J.H., Piunno, P.A.E., and Krull, U.J., Anal.Chem. Acta, 2002, vol. 457, p. 29.

    Article  Google Scholar 

  4. Halperin, A., Buhot, A., and Zhulina, E.B., J. Phys.: Condens. Matter., 2006, vol. 18, p. S463.

    ADS  Google Scholar 

  5. Ananyan, G., Avetisyan, A., Aloyan, L., and Dalyan, Y., Biophys. Chem., 2011, vol. 156, p. 96.

    Article  Google Scholar 

  6. Vardevanyan, P.O., Antonyan, A.P., Parsadanyan, M.A., and Shahinyan, M.A., J. Biomol. Struct. Dyn., DOI: https://doi.org/10.1080/07391102.2019.1630006 (2019).

  7. Ghazaryan, A.A., Dalyan, Y.B., Haroutiunian, S.G., Tikhomirova, A., and Chalikian, T.V., J. Amer. Chem. Soc., 2006, vol. 128, p. 1914.

    Article  Google Scholar 

  8. Pasternack, R.F., Goldsmith, J.I., Szep, S., and Gibbs, E.J., Biophys. J., 1998, vol. 75, p. 1024.

    Article  ADS  Google Scholar 

  9. Willner, I., Patolsky, F., and Wasserman, J., Angew Chem. Int. Ed., 2001, vol. 40, p. 1861.

    Article  Google Scholar 

  10. O’Neill, M.A. and Barton, J.K., J. Am. Chem. Soc., 2004, vol. 126, p. 11471.

    Article  Google Scholar 

  11. Hinckley, D.M., Freeman, G.S., Whitmer, J.K., and de Pablo, J.J., J. Chem. Phys., 2013, vol. 139, p. 144903.

    Article  ADS  Google Scholar 

  12. Hinckley, D.M., Lequieu, J.P., and de Pablo, J.J., J. Chem. Phys., 2014, vol. 141, p. 035102.

    Article  ADS  Google Scholar 

  13. Peterson, A.W., Heaton, R.J., and Georgiadis, R.M., Nucl. Acids Res., 2001, vol. 29, p. 5163.

    Article  Google Scholar 

  14. Halperin, A., Buhot, A., and Zhulina, E.B., Biophys. J., 2004, vol. 86, p. 718.

    Article  ADS  Google Scholar 

  15. Hagan, M.F. and Chakraborty, A.K., J. Chem. Phys., 2004, vol. 120, p. 4958.

    Article  ADS  Google Scholar 

  16. Seckar, M.M.A., Bloch, W., and John, P.M.S., Nucleic Acids Res., 2005, vol. 33, p. 366.

    Article  Google Scholar 

  17. Sorokin, N.V., Chechetkin, V.R., Pan’kov, S.V., Somova, O.G., Livshits, M.A., Donnikov, M.Y., Turygin, A.Y., Barsky, V.E., and Zasedatelev, A.S., J. Biomol. Struct. Dyn., 2006, vol. 24, p. 57.

    Article  Google Scholar 

  18. Irving, D., Gong, P., and Levicky, R., J. Phys. Chem. B, 2010, vol. 114, p. 7631.

    Article  Google Scholar 

  19. Schmitt, T.J. and Knotts IV, T.A., J. Chem. Phys., 2011, vol. 134, p. 205105.

    Article  ADS  Google Scholar 

  20. Nelson, S.M., Ferguson, L.R., and Denny, W.A., Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2007, vol. 623, p. 24.

    Article  Google Scholar 

  21. Kostjukov, V.V., Santiago, A.A.H., Rodriguez, F.R., Castilla, S.R., Parkinson, J.A., and Evstigneev, M.P., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 5588.

    Article  Google Scholar 

  22. Ricci, C.G. and Netz, P.A., J. Chem. Inf. Model., 2009, vol. 49, p. 1925.

    Article  Google Scholar 

  23. Ba, D. and Boyaci, I.H., Anal. Bioanal. Chem., 2011, vol. 400, p. 703.

    Article  Google Scholar 

  24. Xiang, L., Palma, J.L., Bruot, C., Mujica, V., Ratner, M.A., and Tao, N., Nature Chem., 7(3), 221 (2015).

    Article  ADS  Google Scholar 

  25. Tonoyan, Sh.A., Hakobyan, A.A., Andreassian, A.K., Morozov, V.F., and Mamasakhlisov, Y.Sh., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, vol. 53, p. 179.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Mamasakhlisov.

Additional information

Russian Text © The Author(s), 2020, published in Izvestiya Natsional’noi Akademii Nauk Armenii, Fizika, 2020, Vol. 55, No. 1, pp. 117–125.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamasakhlisov, A.Y., Kazaryan, E.M., Tonoyan, S.A. et al. The Conductivity of the Monolayer of DNA — Quantum Dot Complexes in the Presence of Intercalating Charged Ligands. J. Contemp. Phys. 55, 87–93 (2020). https://doi.org/10.3103/S1068337220010120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337220010120

Keywords

Navigation