Skip to main content
Log in

The Influence of Structural Defects in Silicon on the Formation of Photosensitive Mn4Si7–Si❬Mn❭–Mn4Si7 and Mn4Si7–Si❬Mn❭–M Heterostructures

  • SOLAR ENGINEERING MATERIALS SCIENCE
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract—

The effect of the amorphous transition layer at the interface between Mn4Si7 and silicon doped with manganese on the photoelectric properties of heterostructures is considered. It is found that the precipitated Mn atoms on the silicon surface are grouped at high temperatures, forming drops of liquid manganese, which dissolve the near-surface layer of silicon, forming a liquid solution-melt of Mn with Si. As the solution solidifies, Mn4Si7 forms, and the Si–Si bonds under the silicide break due to intense diffusion of Si atoms; an elastically deformed Si region forms, which predetermines the evolution of the formation of photoelectric phenomena in the Mn4Si7–Si❬Mn❭–Mn4Si7 and Mn4Si7–Si❬Mn❭–M heterostructures. The microstructure and chemical composition of doped Si❬Mn❭ samples were studied by means of scanning electron microscopy and X-ray energy dispersive spectrometry using a Quanta 200-3D microscope, and the interface structure of the higher manganese silicide (HMS) and Si❬Mn❭ layer at the nanoscale was refined using the Fourier transform of local zones of high-resolution electron-microscopic images. It is concluded that in the process of diffusion doping of silicon with manganese, broken layers on the surface of the crystal deepen the embedding of manganese atoms, facilitate adsorption, dissolution, and diffusion of Mn in the volume of Si, and also enable the formation of an amorphous layer at the interface of higher manganese silicide and the Si❬Mn❭ layer. The presence of an amorphous transition layer facilitates the process of impact ionization of current carriers upon application of external voltage, as well as the formation of photoelectric phenomena: infrared quenching, temperature quenching, high photosensitivity, and long-term relaxation of residual conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Shul'pina, I.L., X-ray topographic study of defects in si-based multilayer epitaxial power devices, Mater. Elektron. Tekh., 2013, no. 1, pp. 28–34.

  2. Mozzherin, A.V., Evaluation of the critical radius of dislocation loops in silicon and geremanium based stacking fault energy, Fundam. Issled., 2012, no. 11, part 3, pp. 700–704.

  3. Sobolev, N.A., Defect engineering in implantation technology of silicon light-emitting structures with dislocation-related luminescence, Semiconductors, 2010, vol. 44, no. 1, pp. 1–23.

    Article  Google Scholar 

  4. Chernyshov, A.A., Osnovy nadezhnosti poluprovodnikovykh priborov i integral’nykh mikroskhem (Fundamentals of the Reliability of Semiconductor Devices and Integrated Circuits), Moscow: Radio Svyaz’, 1988.

  5. Bakhrushin, V.E., Poluchenie i fizicheskie svoistva slabolegirovannykh sloev mnogosloinykh kompozitsii, Monografiya (Obtaining and Physical Properties of Lightly Doped Layers of Multilayer Compositions), Zaporozh’e: 2001.

  6. Kamilov, T.S., Rysbaev, A.S., Klechkovskaya, V.V., et al., Influence of structural defects in silicon on formation of photosensitive heterostructures Mn4Si7–Si❬Mn❭–Mn4Si7 and Mn4Si7–Si❬Mn❭–M, Euras. J. Phys. Funct. Mater., 2018, vol. 2, no. 4, pp. 360–366.

    Article  Google Scholar 

  7. Orekhov, A.S., Kamilov, T.S., Gaibov, A.G., Vakhabov, K.I., and Klechkovskaya, V.V., On the growth of higher manganese silicide films on silicon, Tech. Phys., 2010, vol. 55, no. 6, pp. 874–876.

    Article  Google Scholar 

  8. Dovbnya, A.N. and Yefimov, V.P., Radiation technologies in formation of the condensed state of atomic structure in crystal materials, Telecommun. Radio Eng., 2008, vol. 67, no. 2, pp. 139–160.

    Article  Google Scholar 

  9. Dovbnya, A.N., Yefimov, V.P., Abyzov, A.S., and Rybka, A.V., Stabilization of nano-dimensional structures in the single-crystal silicon issueume, Telecommun. Radio Eng., 2009, vol. 68, no. 7, pp. 627–648.

    Article  Google Scholar 

  10. Handbook of Thin Film Technology, Meissel, L. and Glang, R., Eds., New York: McGraw-Hill, 1970.

    MATH  Google Scholar 

  11. Kamilov, T.S., Kabilov, D.K., Samiyev, I.S., and Khusnutdinova, Kh.Kh., On the possibility developing thermoelectric sensors based on multielement higher manganese silicide film structures, Tech. Phys., 2005, vol. 50, no 10, pp. 1370–1373.

    Article  Google Scholar 

  12. Ivanenko, L.I., Shaposhnikov, V.L., Filonov, A.B., et al., Electronic properties of semiconducting silicides: fundamentals and recent predictions, Thin Solid Films, 2004, vol. 461, pp. 141–147.

    Article  Google Scholar 

  13. Ivanenko, L.I., Lange, H., and Heinrich, A., Transport Properties in Semiconducting Silicides, vol. 39 of Springer Series in Materials Science, Borisenko, V.E., Ed., Berlin, Heidelberg: Springer, 2000, pp. 243–297.

  14. Sze, S.M., Physics of Semiconductor Devices, New York: Wiley, 1981.

    Google Scholar 

  15. Kamilov, T.S., Klechkovskaya, V.V., Sharipov, B.Z., et al., Elektricheskie i fototermoelektricheskie svoistva geterofaznykh struktur na osnove kremniya i silitsidov margantsa (Electrical and Photothermoelectric Properties of Heterophase Structures Based on Silicon and Manganese Silicides), Tashkent: MERIYUS, 2014.

  16. Haderbache, L. et al., Epitaxial growth of CoSi2 on Si (100), Thin Solid Films, 1990, vol. 184, pp. 317–327.

    Article  Google Scholar 

  17. Bezbabnyi, D.A., Study of the formation, structure and properties of films of semiconductor calcium silicides on Si (111), Extended Abstract of Doctoral Dissertation, Vladikavkaz: 2014.

  18. Orekhov, A.S., Kamilov, T.S., Orekhov, A.S., Arkharova, N.A., Rakova, E.V., and Klechkovskaya, V.V., Nanotechnol. Russ., 2016, vol. 11, nos. 9–10, pp. 610–616.

    Article  Google Scholar 

  19. Orekhov, A.S., Kamilov, T.S., Ibragimova, B.V., et al., Structure of thermoelectric films of higher manganese silicide on silicon according to electron microscopy data, Semiconductors, 2017, vol. 51, no. 6, pp. 706–709.

    Article  Google Scholar 

  20. Kamilov, T.S., Sadullaev, B.L., et al., Semicond. Sci. Technol., 1998, vol. 13, pp. 496–499.

    Article  Google Scholar 

  21. Kamilov, T.S., Chirva, V.P., Kabilov, D.K., Semicond. Sci. Technol., 1999, vol. 14, pp. 1012–1017.

    Article  Google Scholar 

  22. Bakhadyrkhanov, M.K., Kamilov, T.S., Khusanov, A.Zh., et al., Investigation of the effect of the transition layer on the photoelectric properties in the structures of higher manganese silicide (HMS)-SiMnM, Poverkhnost’, 2002, no. 6, pp. 100–103.

  23. Kamilov, T.S., Ernst, I.V., and Samunin, A.Yu., Photoconduction amplification and quenching in the Mn4Si7–Si❬Mn❭–Mn4Si7 and Mn4Si7–Si❬Mn❭–M heterostructures, Tech. Phys., 2014, vol. 59, no. 12, pp. 1833–1839.

    Article  Google Scholar 

  24. Kamilov, T.S., Kabilov, D.K., Samiev, I.S., Khusnutdinova, Kh.Kh., Muminov, R.A., and Klechkovskaya, V.V., Formation of higher manganese silicide films on silicon, Tech. Phys., 2005, vol. 50, no. 8, pp. 1102–1104.

    Article  Google Scholar 

  25. Orekhov, A.S., Kamilov, T.S., Gaibov, A.G., Vakhabov, K.I., and Klechkovskaya, V.V., On the growth of higher manganese silicide films on silicon, Tech. Phys., 2010, vol. 55, no. 6, pp. 874–876.

    Article  Google Scholar 

  26. Lineva, I.A., Sakharov, S.V., Uskov, V.A., and Fomiseva, Z.V., Izv. Akad. Nauk SSSR,Neorg. Mater., 1979, vol. 15, pp. 731–734.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to the head of the laboratory of the Ioffe Physicotechnical Institute, Professor A.T. Burkov, for the help in discussing the research results.

Funding

This study was funded by the Ministry of Innovation of the Republic of Uzbekistan as part of the scientific project OT-A3-56.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Rysbaev.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamilov, T.S., Rysbaev, A.S., Klechkovskaya, V.V. et al. The Influence of Structural Defects in Silicon on the Formation of Photosensitive Mn4Si7–Si❬Mn❭–Mn4Si7 and Mn4Si7–Si❬Mn❭–M Heterostructures. Appl. Sol. Energy 55, 380–384 (2019). https://doi.org/10.3103/S0003701X19060057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X19060057

Keywords:

Navigation