Skip to main content
Log in

Investigation of the Physiological Role of Serotonin in the Muscle Function in Planaria

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

In the present study, close spatial relationships between peripheral serotoninergic nerve elements and the musculature of the body in planaria Polycelis tenuis, Schmidtea mediterranea, and Girardia tigrina have been demonstrated using immunocytochemical and histochemical methods and a confocal laser scanning microscopy. Such a localization of serotoninergic neurons and their fibers indicates an important role of serotonin in the regulation of the muscle function in planaria. Investigation of the mechanisms of muscle contraction in planaria have shown that depolarization caused by high concentration of potassium ions (15–100 mM) and serotonin (10–4 –10–9 M) induced contractions of isolated muscle fibers of Procerodes littoralis. Dihydropyridine calcium channel blockers, nicardipine, nitrendipine, and nifedipine, inhibited contractions of muscles induced by potassium and serotonin suggesting the dependence of the muscle contraction on the extracellular calcium. Thapsigargin and cyclopiazonic acid decreased the number of muscle cells contracting in response to potassium ions, but did not influence the induction of the contractions by serotonin. Thus, the muscle contraction caused by serotonin did not depend on the intracellular calcium. The results provide evidence of the presence of different types of receptors and ion channels mediating the muscle contraction in planaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. Baguna J. 1981. Planarian neoblasts. Nature. 290, 14–15.

    Article  Google Scholar 

  2. Grohme M.A., Schloissnig S., Rozanski A., Pippel M., Young G.R., Winkler S., Brandl H., Henry I., Dahl A, Powell S., Hiller M., Myers E., Rink J.Ch. 2018. The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. Nature.554, 56–61. https://doi.org/10.1038/nature25473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nogi T., Zhang D., Chan J.D., Marchant J.S. 2009. A novel biological activity of praziquantel requiring voltage-operated Ca channel beta subunits: Subversion of flatworm regenerative polarity. PLoS Negl. Trop. Dis. 3 (6), e464.

    Article  Google Scholar 

  4. Page I.H. 1976. The discovery of serotonin. Perspect. Biol. Med.20 (1), 1–8.

    Article  CAS  Google Scholar 

  5. Khozhai L.I., Puchkov V.F., Otellin V.A. 1995. The influence of the serotonin deficiency on the embryonic development of mammalians. Ontogenez (Rus.). 26 (5), 350–355.

    CAS  Google Scholar 

  6. Vleugels R., Verlinden H., Vanden Broeck J. 2015. Serotonin, serotonin receptors and their actions in insects. Neurotransmitter.2, e314. https://doi.org/10.14800/nt.314

    Article  CAS  Google Scholar 

  7. Ivashkin E.G., Khabarova M.Yu., Melnikova V.I., Kharchenko O.A., Voronezhskaya E.E. 2017. Local serotonin-immunoreactive plexus in the female reproductive system of hermaphroditic gastropod mollusc Lymnaea stagnalis.Invertebrate Zoology.14 (2), 134–139.

    Article  Google Scholar 

  8. Baganz N.L., Blakely R.D. 2013. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem. Neurosci. 4 (1), 48–63.

    Article  CAS  Google Scholar 

  9. Plieger T., Melchers M., Vetterlein A., Görtz J., Kuhn S., Ruppel M., Reuter M. 2017. The serotonin transporter polymorphism (5-HTTLPR) and coping strategies influence successful emotion regulation in an acute stress situation: Physiological evidence. Int. J. Psychophysiol.114, 31–37.

    Article  Google Scholar 

  10. Okaty B.W., Commons K.G., Dymecki S.M. 2019. Embracing diversity in the 5-HT neuronal system. Nat. Rev. Neurosci. 20 (7), 397–424.https://doi.org/10.1038/s41583-019-0151-3

  11. Gershon M.D. 2004. Review article: Serotonin receptors and transporters – roles in normal and abnormal gastrointestinal motility. Aliment. Pharmacol. Ther. 20 (7), 3–14.

    Article  CAS  Google Scholar 

  12. Sung D.J., Noh H.J., Kim J.G., Park S.W., Kim B., Cho H., Bae Y.M. 2013. Serotonin contracts the rat mesenteric artery by inhibiting 4-aminopyridine-sensitive Kv channels via the 5-HT2A receptor and Src tyrosine kinase. Exp. Mol. Med. 45, e67. https://doi.org/10.1038/emm.2013.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zavaritskaya O, Lubomirov L.T., Altay S., Schubert R. 2017. Src tyrosine kinases contribute to serotonin-mediated contraction by regulating calcium-dependent pathways in rat skeletal muscle arteries. Pflugers Arch. 469 (5–6), 767–777. https://doi.org/10.1007/s00424-017-1949-3

    Article  CAS  PubMed  Google Scholar 

  14. French A.S., Simcock K.L., Rolke D., Gartside S.E., Blenau W., Wright G.A. 2014. The role of serotonin in feeding and gut contractions in the honeybee. J. Insect. Physiol.61, 8–15. https://doi.org/10.1016/j.jinsphys.2013.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hrchkova G., Halton D.W., Maule A.G., Show Ch., Johnston C.F. 1994. 5-Hydroxytryptamine (serotonin)-immunoreactivity in the nervous system of Mesocestoides corty tetrathyridia (Cestoda: Cyclophyllidea). J. Parasitol. 80 (1), 144–148.

    Article  Google Scholar 

  16. Terenina N. B., Gustavsson M. K. S. 2014. Funktsionalnaya morfologiya nervnoi sistemy paraziticheskikh ploskikh chervrey (trematodi, cistidi) (The functional morphology of the nervous system of parasitic flatworms (trematodes, cestodes)). Moscow: KMK Tovarishchestvo nauchnykh izdanii.

  17. Blair K.L., Day T.A., Lewis M.C., Bennett J.L., Pax R.A. 1991. Studies on muscle cells isolated from Schistosoma mansoni: A Ca2+-dependent K+ channel. Parasitol. 102, 251–258.

    Article  CAS  Google Scholar 

  18. Totten M., Kreshchenko N., Day T., Marks N., Halton D.W., Maule A.G. 2002. Signal transduction mechanisms mediating muscle contraction in platyhelminth. In: Proceedings of the 10th International Congress of Parasitology. Vancouver, Canada. p. 117.

  19. Kreshchenko N. D. 2016. Immunocytochemical identification of serotonergic neurons in planaria Girardia tigrina. Biol. membrany (Rus.). 33 (5), 353–362.

  20. Wulf E., Deboben A., Bautz F.A., Faulstich H., Wieland T. 1979. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc. Natl. Acad. Sci. USA. 76, 4498–4502.

    Article  CAS  Google Scholar 

  21. Kreshchenko N. D. 2017. Some details of the morphological structure of planarian muscles identified by fluorescent and confocal laser scanning microscopy. Biofizika (Rus.). 62 (2), 347–354.

    Google Scholar 

  22. Pascolini R., Panara F., Di Rosa I., Fagotti A., Lorvik S. 1992. Characterization and fine-structural localization of actin- and fibronectin-like proteins in planaria (Dugesia lugubris s.1). Cell. Tiss. Res. 267, 499–506.

    Article  CAS  Google Scholar 

  23. Orii H., Ito H., Watanabe K. 2002. Anatomy of the planarian Dugesia japonica. I. The muscular system revealed by antisera against myosin heavy chain. Zoological science. 19, 1123–1131.

    Article  CAS  Google Scholar 

  24. Bueno D., Baguñà J., Romero R. 1997. Cell-, tissue-, and position-specific monoclonal antibodies against the planarian Dugesia (Girardia) tigrina.Histochem. Cell. Biol. 107, 139–149.

    Article  CAS  Google Scholar 

  25. Cebrià F. 2016. Planarian body-wall muscle: Regeneration and function beyond a simple skeletal support. Front. Cell Devel. Biol. 4, 8. https://doi.org/10.3389/fcell.2016.00008

    Article  Google Scholar 

  26. Reuter M., Gustafsson M.K.S., Sahlgren C., Halton D.W., Maule A.G. Shaw Ch. 1995. The nervous system of Tricladida. I. Neuroanatomy of Procerodes littoralis (Maricola, Procerodidae): An immunocytochemical study. Invert. Neurosci.1, 11–122.

    Google Scholar 

  27. Mäntylä K., Reuter M., Halton D.W., Maule A.G., Brennan G.P., Shaw C., Gustafsson M.K.S. 1998b. The nervous system of Procerodes littoralis (Maricola, Tricladida). An ultrastructural and immunoelectron microscopical study. Acta Zoologica. 79, 1–8.

    Article  Google Scholar 

  28. Kreshchenko N.D., Reuter M., Sheiman I.M., Halton D.W., Johnston R.N., Shaw Ch., Gustafs-son M.K.S. 1999. Relationship between musculature and nervous system in the regenerating pharynx in Dugesia tigrina (Plathelminthes). Invert. Reprod. Dev.35 (2), 109–125.

    Article  Google Scholar 

  29. Reuter M., Gustafsson M.K., Sheiman I.M., Terenina N., Halton D.W., Maule A.G., Shaw C. 1995b. The nervous system of Tricladida. II. Neuroanatomy of Dugesia tigrina (Paludicola, Dugesiidae): An immunocytochemical study. Invert. Neurosci. 1, 133–143.

    Article  CAS  Google Scholar 

  30. Cebrià F. 2008. Organization of the nervous system in the model planarian Schmidtea mediterranea: An immunocytochemical study. Neurosci. Res. 61, 375–384.

    Article  Google Scholar 

  31. Fernandes M.C., Alvares E.P., Gama P., Silveira M., 2003. Serotonin in the nervous system of the head region of the land planarian Bipalium kewense.Tissue Cell. 35, 479–486.

    Article  CAS  Google Scholar 

  32. Sakharov D.A., Golubev A.I., Malyutina L.V., Kabotyanski E.A., Nezlin L.P. 1988. Serotoninergic control of ciliary locomotion in a turbellarian flatworm. In: Neurobiology of invertebrates: Transmitters, modulators and receptors. Budapest: Akadémiai Kiadó. p. 479–491.

    Google Scholar 

  33. Farrell M.S., Gilmore K., Raffa R.B., Walker E.A. 2008. Behavioral characterization of serotonergic activation in the flatworm Planaria. Behav. Pharmacol. 19 (3), 177–182.

    Article  CAS  Google Scholar 

  34. Hrchkova G., Velebny S., Halton D.W., Maule A.G. 2002. Mesocestoides corti (syn.M. vogae): Modulation of larval motility by neuropeptides, serotonin and acetylcholine. Parasitol.124, 409–421.

    Article  Google Scholar 

  35. Graham M.K., McGeown J.G., Fairweather I. 1999. Ionic mechanisms underlying spontaneous muscle contractions in the liver fluke, Fasciola hepatica.Amer. J. Physiology.277, R374–R383.

    CAS  Google Scholar 

  36. Blair K.L., Bennet J.L., Pax R.A. 1993. Serotonin and acetylcholine: Further analysis of praziquantel-induced contraction of magnesium-paralysed Schistosoma mansoni.Parasitol.107, 387–395.

    Article  CAS  Google Scholar 

  37. Moneypenny C.G., Kreshchenko N., Day T.A., Moffett C., Halton D.W., Maule A.G. 2001. Physiological effects of platyhelminth FMRFamide-related peptides and classical transmitters on dispersed muscle fibres of the turbellarian, Procerodes littoralis.Parasitol. 115, 281–288.

    Article  Google Scholar 

  38. Creti P., Capasso A., Grasso M., Parisi E. 1992. Identification of a 5-HT receptor positively coupled to planarian adenilate cyclase. Cell. Biol. Inter. Rep. 16 (5), 427–432.

    Article  CAS  Google Scholar 

  39. Saitoh O., Yuruzume E., Nakata H. 1996. Identification of planarian serotonin receptor by ligand binding and PCR studies. Neuroreport. 8, 173–178.

    Article  CAS  Google Scholar 

  40. Nishimura K., Unemura K., Tsushima J., Yamamuchi Y., Otomo J., Taniguchi T., Kaneko S., Agata K., Kitamura Y. 2009. Identification of a novel planarian G-protein-coupled receptor that responds to serotonin in Xenopus laevis oocytes. Biol. Pharm. Bull. 32(10), 1672–1677.

    Article  CAS  Google Scholar 

  41. Zamanian M., Kimber M.J., McVeigh P., Carlson S.A., Maule A.G., Day T.A. 2011. The repertoire of G protein-coupled receptors in the human parasite Schistosoma mansoni and the model organism Schmidtea mediterranea.BMC Genomics. 12, 596. http://www.biomedcentral.com/1471-2164/12/596

    Article  CAS  Google Scholar 

  42. Zamanian M., Agbedanu P.N., Wheeler N.J., McVeigh P., Kimber M.J., Day T.A. 2012. Novel RNAi-mediated approach to G protein-coupled receptor deorphanization: Proof of principle and characterization of a planarian 5-HT receptor. PLoS One. 7 (7), e40787.

    Article  CAS  Google Scholar 

  43. Patocka N., Sharma N., Rashid M., Ribeiro P. 2014. Serotonin signaling in Schistosoma mansoni: A serotonin–activated G protein-coupled receptor controls parasite movement. PLOS Pathogens.10 (1), e1003878.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Prof. A. G. Maule and Prof. D.W. Halton of Queen’s University of Belfast (Northern Ireland, UK) for the opportunity to work in the laboratory, as well as to Dr. A. Mousley for assistance in the technique of the muscle cell cultivation of planaria and valuable recommendations. Fluorescence microscope with digital camera (Leica Mycrosystems, Germany) was provided by the Optical Microscopy and Spectrophotometry core facilities, ICB RAS (Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino). The work on the physiology of muscle contraction was supported by a Royal Society Fellowship Program, Great Britain. Immunocytochemical studies on the identification of serotonin in the nervous system of planarian were supported by the Russian Foundation for Basic Research (project no. 18-04-00349a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Kreshchenko.

Ethics declarations

The author states that there is no conflict of interest.

All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals. The Protocol of experiments was approved by the bioethics committee of the Institute of Cell Biophysics, RAS.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreshchenko, N.D. Investigation of the Physiological Role of Serotonin in the Muscle Function in Planaria. Biochem. Moscow Suppl. Ser. A 14, 81–90 (2020). https://doi.org/10.1134/S1990747820010067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747820010067

Keywords:

Navigation