Skip to main content
Log in

Ouabain at Low Concentrations Affects Transcription without Any Impact on Intracellular Content of Sodium and Potassium in Rat Brain Neurons

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

In several types of cells, inhibition of ubiquitous α1-isoform of the Na+,K+-ATPase leads to drastic transcriptomic changes mediated by dissipation of transmembrane concentration gradients of monovalent cations. In the present study, we employed the sharp differences in the affinity of α1- and α3-Na+,K+-ATPase for ouabain to examine the role of α3 isoform in the regulation of intracellular Na+ and K+ content and gene expression in primary cultures of rat cerebellum granule cells. Addition of 100 nM ouabain decreased the Na+,K+-ATPase activity by 20% due to the inhibition of α3 isosyme. At this concentration, ouabain changed transcription of 17 genes with maximal ~2-fold activation and 1.5-fold inhibition. The full-scale inhibition of α1- and α3-Na+,K+-ATPase by 1 mM ouabain was accompanied by a ~50-fold elevation of the [Na+]i/[K+]i ratio and altered the content of mRNA encoding 673 genes with maximal 20-fold activation and 3-fold inhibition. Unlike 1 mM ouabain, 100 nM ouabain did not affect phosphorylation of the Ca2+-sensitive transcription regulator CREB. Our results show that transcriptomic changes in neurons subjected to inhibition of α3-Na+,K+-ATPase by low doses of ouabain are not mediated by elevation of the [Na+]i/[K+]i, ratio and activation-sensitive mechanisms of excitation–transcription coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Scheiner-Bobis G. 2003. The sodium pump. Its molecular properties and mechanics of ion transport. Eur. J. Biochem.269, 2424–2433.

    Article  Google Scholar 

  2. Blanco G. 2015. Subunit heterogeneity as a mechanism for tissue-specific ion regulation. Sem. Nephrology. 25, 292–303.

    Article  Google Scholar 

  3. Xie Z., Askari A. 2002. Na+/K+-ATPase as a signal transducer. Eur. J. Biochem.269, 2434–2439.

    Article  CAS  Google Scholar 

  4. Aperia A. 2007. New roles for an old Na,K-ATPase emerges as an interesting drug target. J. Intern. Med.261, 44–52.

    Article  CAS  Google Scholar 

  5. Liu J., Xie Z. 2010. The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter traficking. Biochim. Biophys. Acta.1802, 1237–1245.

    Article  CAS  Google Scholar 

  6. Riganti C., Campia I., Kopecka J., Gazzano E., Doublier S., Aldieri E., Bosia A., Ghigo D. 2011. Pleiotropic effects of cardioactive glycosides. Curr. Med. Chem.18, 872–885.

    Article  CAS  Google Scholar 

  7. Orlov S.N., Klimanova E.A., Tverskoi A.M., Vladychenskaya E.A., Smolyaninova L.V., Lopina O.D. 2017. \({\text{Na}}_{{\text{i}}}^{ + },{\text{K}}_{{\text{i}}}^{ + }\)-dependent and -independent signaling triggered by cardiotonic steroids, facts and artifacts. Molecules.22, E635.

    Article  Google Scholar 

  8. Hieber V., Siegel G.J., Fink D.J., Beaty M.V., Mata M. 1991. Differential distribution of (Na,K)-ATPase alpha isoforms in the central nervous system. Cell. Mol. Neurobiol.11, 253–262.

    Article  CAS  Google Scholar 

  9. McGrail K.M., Phillips J.M., Sweadner K.J. 1991. Immunofluorescent localization of three Na,K-ATPase isozymes in rat central nervous system, both neurons and glia can express more than one Na,K-ATPase. J. Neurosci.11, 381–391.

    Article  CAS  Google Scholar 

  10. Peng L., Martin-Vasallo P., Sweadner K.J. 1997. Isoforms of Na,K-ATPase alpha and beta subunits in the rat cerebellum and granule cell cultures. J. Neurosci.17, 3488–3502.

    Article  CAS  Google Scholar 

  11. Akkuratov E.E., Lopacheva O.M., Kruusmagi M., Lopachev A.V., Shah Z.A., Boldyrev A.A., Liu L. 2015. Functional interaction between Na/K-ATPase and NMDA receptor in cerebellar neurons. Mol. Neurobiol.52, 1726–1734.

    Article  CAS  Google Scholar 

  12. Munzer J.S., Daly S.E., Jewell-Motz E.A., Lingrel J.B., Blostien R. 1994. Tissue- and isoform-specific behavior of the Na,K-ATPase. J. Biol. Chem.269, 16668–16676.

    CAS  PubMed  Google Scholar 

  13. Zahler R., Zhang Z.-T., Manor M., Boron W.F. 1997. Sodium kinetics of Na,K-ATPase α isoforms in intact transfected HeLa cells. J. Gen. Physiol.110, 201–213.

    Article  CAS  Google Scholar 

  14. Dobretsov M., Stimers J.R. 2005. Neuronal function of alpha3 isoform of the Na/K-ATPase. Front. Biosci.10, 2372–2396.

    Article  Google Scholar 

  15. Azarias G., Kruusmag M., Connor S., Akkuratov E.E., Liu X.L., Lyons D., Brismar H., Broberger C., Aperia A.A. 2013. Specific and essential role for Na,K-ATPase α3 in neurons co-expressing α1 and α3. J. Biol. Chem.288, 2734–2743.

    Article  CAS  Google Scholar 

  16. O’Brien W.J., Lingrel J.B., Wallick E.T. 1994. Ouabain binding kinetics of the rat alpha two and alpha three isoforms of the sodium-potassium adenosine triphosphate. Arch. Biochem. Biophys.310, 32–39.

    Article  Google Scholar 

  17. Hara Y., Nikamoto A., Kojima T., Matsumoto A., Nakao M. 1980. Expression of sodium pump activities in BALB/c 3T3 cells transfected with cDNA encoding alpha 3-subunits of rat brain Na+,K+-ATPase. FEBS Lett.26, 27–30.

    Google Scholar 

  18. Berrebi-Betrand I., Maixent J.M., Christe G., Lelievre L.G. 1990. Two active Na+/K+-ATPases of high affinity for ouaban in adult rat brain membranes. Biochim. Biophys. Acta.1021, 148–156.

    Article  Google Scholar 

  19. Atterwill C.K., Cunningham V.J., Balazs R. 1984. Characterization of Na+,K+-ATPase in cultured and separated neuronal and glial cells from rat cerebellum. J. Neurochem. 43, 8–18.

    Article  CAS  Google Scholar 

  20. Orlov S.N., Hamet P. 2015. Salt and gene expression: Evidence for \({\text{Na}}_{{\text{i}}}^{ + },{\text{K}}_{{\text{i}}}^{ + }\)-mediated signaling pathways. Pflugers Arch. Eur. J. Physiol. 467, 475–487.

    Article  Google Scholar 

  21. Lopachev A.V., Lopacheva O.M., Osipova E.A., Vladychenskaya E.A., Smolyaninova L.V., Fedorova T.N., Koroleva O.V., Akkuratov E.E. 2016. Ouabain-induced changes in MAP kinase phosphorylation in primary culture of rat cerebellar cells. Cell. Biochem. Funct.34, 367–377.

    Article  CAS  Google Scholar 

  22. Marks M.J., Seeds N.W. 1978. A heterogeneous ouabain – ATPase interaction in mouse brain. Life Sci.23, 2735–2744.

    Article  CAS  Google Scholar 

  23. Berrebi-Bertrand I., Maixent J.M., Christe G., Lelièvre L.G. 1990. Two active Na+/K+-ATPases of high affinity for ouabain in adult rat brain membranes. Biochim. Biophys. Acta.1021, 148–156.

    Article  CAS  Google Scholar 

  24. Touhara K., Niimura Y., Ihara S. 2016. Chemosensory Transduction. Elsevier Inc., p. 49–66.

    Google Scholar 

  25. Lowe G., Nakamura T., Gold G.H. 1989. Adenylate cyclase mediates olfactory transduction for a wide variety of odorants. Proc. Natl. Acad. Sci. USA.86, 5641–5645.

    Article  CAS  Google Scholar 

  26. Nakamura T., Gold G.H. 1987. A cyclic nucleotide-gated conductance in olfactory recepptor glia. Nature.325, 442–444.

    Article  CAS  Google Scholar 

  27. Kang N., Koo J. 2012. Olfactory receptors in non-chemosensory tissues. BMB Rep.45, 612–622.

    Article  CAS  Google Scholar 

  28. Griffin C.A., Kafadar K.A., Pavlath G.K. 2009. MOR23 promotes muscle regeneration and regulates cell adhesion and migration. Developmental Cell.17, 649–661.

    Article  CAS  Google Scholar 

  29. Sidorenko S.V., Klimanova E.A., Milovanova K., Lopina O.D., Kapilevich L.V., Chibalin A.V., Orlov S.N. 2018. Transciptomic changes in C2C12 myotubes triggered by electrical stimulation, role of \({\text{Ca}}_{{\text{i}}}^{{2 + }}\)-mediated and \({\text{Ca}}_{{\text{i}}}^{{2 + }}\)-independent signaling and elevated [Na+]i/[K+]i ratio. Cell Calcium. 76, 72–86.

    Article  CAS  Google Scholar 

  30. Klimanova E.A., Sidorenko S.V., Smolyaninova L.V., Kapilevich L.V., Gusakova S.V., Lopina O.D., Orlov S.N. 2019. Ubiquitous and cell type-specific transcriptomic changes triggered by dissipation of monovalent cation gradients in rodent cells: Physiological and pathophysiological implications. Curr. Topics Membranes. 83, 107–149.

    Article  Google Scholar 

  31. Klimanova E.A., Tverskoi A.M., Koltsova S.V., Sidorenko S.V., Lopina O.D., Tremblay J., Hamet P., Kapilevich L.V., Orlov S.N. 2017. Time- and dose-dependent actions of cardiotonic steroids on transcriptome and intracellular content of Na+ and K+, a comparative analysis. Sci. Rep.7, 45403.

    Article  CAS  Google Scholar 

  32. Santana L.F. 2008. NFAT-dependent excitation-transcription coupling in heart. Circ. Res. 103, 681–683.

    Article  CAS  Google Scholar 

  33. Gundersen K. 2011. Excitation-transcription coupling in skeletal muscle, the molecular pathways of exercise. Biol. Rev. 86, 564–600.

    Article  Google Scholar 

  34. Ma H., Groth R.D., Wheeler D.G., Barrett C.F., Tsien R.W. 2011. Excitation–transcription coupling in sympathetic neurons and the molecular mechanism of its initiation. Neurosci. Res. 70, 2–8.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Scientific Foundation (project no. 16-15-10026) and the Russian Foundation for Basic Research (project no. 18-04-00063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. V. Smolyaninova or S. N. Orlov.

Ethics declarations

The authors declare that they have no conflict of interest.

All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals. The Protocol of experiments was approved by the bioethics committee of the Faculty of Biology, Lomonosov Moscow State University (no. 82-O).

Additional information

Translated by A. Shiyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolyaninova, L.V., Shiyan, A.A., Klementieva, T.S. et al. Ouabain at Low Concentrations Affects Transcription without Any Impact on Intracellular Content of Sodium and Potassium in Rat Brain Neurons. Biochem. Moscow Suppl. Ser. A 13, 365–371 (2019). https://doi.org/10.1134/S1990747819030073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747819030073

Keywords:

Navigation