Skip to main content
Log in

Simulation of Ionospheric Effects Induced by Meteorological Storms

  • CHEMICAL PHYSICS OF ATMOSPHERIC PHENOMENA
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The paper presents the results of a numerical simulation of ionospheric disturbances caused by a point thermospheric heat source, which mimic the dissipation effect of acoustic-gravity waves propagating from the region of a meteorological storm. It is shown that ionospheric effects have an extensive spatial structure and are more pronounced during the day than at night. The results of numerical simulations show decreases in the critical frequency of the F2 layer (foF2) and in the total concentration of electrons to the northwest from the heat source maximum, as well as increases in the values of these parameters to the south and southeast from the heat source maximum up to the equatorial region. A comparative analysis of the daytime and nighttime disturbances of atmospheric parameters is given, and a conclusion is drawn on the causes of weakly pronounced changes in the nighttime ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. A. Chernigovskaya, B. G. Shpynev, and K. G. Ratovsky, J. Atmos. Sol.-Terr. Phys. 136, 235 (2015). https://doi.org/10.1016/j.jastp.2015.07.006

    Article  Google Scholar 

  2. W. Li, J. Yue, Y. Yang, et al., J. Atmos. Sol.-Terr. Phys. 161, 43 (2017). https://doi.org/10.1016/j.jastp.2017.06.012

    Article  Google Scholar 

  3. C. R. Martinis and J. R. Manzano, Ann. Geofis. 42 (1), 1 (1999).

    Google Scholar 

  4. E. Yigit, P. K. Knizova, K. Georgieva, et al., J. Atmos. Sol.-Terr. Phys. 141, 1 (2016). https://doi.org/10.1016/j.jastp.2016.02.011

    Article  Google Scholar 

  5. O. P. Suslova, I. V. Karpov, and A. V. Radievskii, Russ. J. Phys. Chem. B 7, 652 (2013). https://doi.org/10.7868/S0207401X13090124

    Article  CAS  Google Scholar 

  6. O. P. Borchevkina and I. V. Karpov, Geomagn. Aeron. 57, 624 (2017). https://doi.org/10.7868/S0016794017040046

    Article  Google Scholar 

  7. I. V. Karpov, O. P. Borchevkina, R. Z. Dadashev, et al., Soln.-Zemn. Fiz. 2 (2), 64 (2016). https://doi.org/10.12737/21001

    Article  Google Scholar 

  8. I. V. Karpov, S. P. Kshevetskii, O. P. Borchevkina, A. V. Radievsky, and A. I. Karpov, Russ. J. Phys. Chem. B 10, 127 (2016). https://doi.org/10.7868/S0207401X16010064

    Article  CAS  Google Scholar 

  9. M. P. Hickey, R. L. Walterscheid, and G. Schubert, J. Geophys. Res. A 116, 12326 (2011). https://doi.org/10.1029/2010JA016792

  10. G. Schubert, M. P. Hickey, and R. L. Walterscheid, J. Geophys. Res. A 110, D07106 (2005). https://doi.org/10.1029/2004JD005488

    Article  Google Scholar 

  11. I. V. Karpov and S. P. Kshevetskii, Geomagn. Aeron. 54, 513 (2014). https://doi.org/10.7868/S001679401404018X

    Article  Google Scholar 

  12. S. L. Vadas and H. Liu, J. Geophys. Res. 114 (A10), 310 (2009). https://doi.org/10.1029/2009JA014108

    Article  Google Scholar 

  13. I. V. Karpov and S. P. Kshevetskii, J. Atmos. Sol.-Terr. Phys. 164, 89 (2017). https://doi.org/10.1016/j.jastp.2017.07.019

    Article  Google Scholar 

  14. A. A. Namgaladze, Yu. N. Koren’kov, V. V. Klimenko, et al., Geomagn. Aeron. 30, 612 (1990).

    Google Scholar 

  15. M. V. Klimenko, V. V. Klimenko, Yu. N. Koren’kov, F. S. Bessarab, I. V. Karpov, K. G. Ratovsky, and M. A. Chernigovskaya, Cosmic Res. 51, 54 (2013). https://doi.org/10.7868/S0023420613010056

    Article  Google Scholar 

  16. I. V. Karpov, F. S. Bessarab, Yu. N. Korenkov, V. V. Klimenko, and M. V. Klimenko, Russ. J. Phys. Chem. B 10, 117 (2016). https://doi.org/10.7868/S0207401X16010052

    Article  CAS  Google Scholar 

  17. I. V. Karpov, F. S. Bessarab, O. P. Borchevkina, K. A. Artemenko, and A. I. Klopova, Geomagn. Aeron. 58, 509 (2018). https://doi.org/10.1134/S0016794018040089

    Article  Google Scholar 

  18. G. I. Grigor’ev, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 42 (1), 3 (1999).

    Google Scholar 

Download references

Funding

This study was supported by grant nos. 18-05-00184-a (I.V. Karpov) and 17-05-00574-a (O.P. Borchevkina) from the Russian Foundation for Basic Research, and grant no. 17-17-01060 (P.A. Vasilev) from the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Karpov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, I.V., Borchevkina, O.P. & Vasilev, P.A. Simulation of Ionospheric Effects Induced by Meteorological Storms. Russ. J. Phys. Chem. B 14, 362–366 (2020). https://doi.org/10.1134/S1990793120020220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120020220

Keywords:

Navigation