Skip to main content
Log in

Exact Invariants of Chemical Reactions with Participation of Two Reagents

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS, CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Autonomous (temporal) invariants of nonlinear chemical reactions between two reagents are determined. For dynamic models of such reactions, analytical solutions exist that allow exact invariants to be found. Such invariants are ratios that connect non-equilibrium values of reagent concentrations, measured in two experiments with different initial conditions (dual experiments). These ratios remain strictly constant throughout the reaction. The relations obtained in this paper were applied to the study of the nonstationary properties of one-, two-, and three-stage nonlinear reactions proceeding in a closed system with the kinetic law of mass action. The invariant curves found for these reactions are compared with the curves of change in the concentrations of reagents over the entire transition process. It is shown that the dependences of the invariants on time remain strictly constant (have zero order), while the reagent concentrations undergo exponential changes during the transition process. The results obtained expand the understanding of the characteristics of nonlinear chemical reactions and can be used to solve inverse problems of unsteady chemical kinetics and modeling chemical reactors of ideal mixing under isothermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. S. Yablonsky, D. Constales, and G. B. Marin, Chem. Eng. Sci. 65, 6065 (2010).

    Article  CAS  Google Scholar 

  2. G. S. Yablonsky, A. N. Gorban, D. Constales, V. V. Galvita, and G. B. Marin, Europhys. Lett. 93, 20004 (2011).

    Article  Google Scholar 

  3. D. Constales, G. S. Yablonsky, V. V. Galvita, and G. B. Marin, Chem. Eng. Sci. 66, 4683 (2011).

    Article  CAS  Google Scholar 

  4. G. S. Yablonsky, D. Constales, and G. B. Marin, Chem. Eng. Sci. 66, 111 (2011).

    Article  CAS  Google Scholar 

  5. D. Constales, G. S. Yablonsky, and G. B. Marin, Chem. Eng. Sci. 73, 20 (2012).

    Article  CAS  Google Scholar 

  6. D. Constales, G. S. Yablonsky, and G. B. Marin, Comput. Math. Appl. 65, 1614 (2013).

    Article  Google Scholar 

  7. G. S. Yablonsky, Theor. Found. Chem. Eng. 48, 608 (2014).

    Article  CAS  Google Scholar 

  8. D. Branco-Pinto, G. Yablonsky, G. Marin, and D. Constales, Entropy 17, 6783 (2015).

    Article  Google Scholar 

  9. J. T. Gleaves, J. R. Ebner, and T. C. Kuechler, Catal. Rev. Sci. Eng. 30, 49 (1988).

    Article  CAS  Google Scholar 

  10. V. Kh. Fedotov and N. I. Kol’tsov, in Proceedings of the 4th All-Russia Conference on Mathematical Modeling of Processes and Systems (BashGU, Ufa, 2015), Vol. 1, p. 138.

  11. V. Kh. Fedotov and N. I. Kol’tsov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 59 (5), 72 (2016).

    Article  CAS  Google Scholar 

  12. V. Kh. Fedotov and N. I. Kol’tsov, Vestn. Tekhnol. Univ. 21 (9), 113 (2018).

    Google Scholar 

  13. V. Kh. Fedotov and N. I. Kol’tsov, Vestn. Tekhnol. Univ. 21 (11), 195 (2018).

    Google Scholar 

  14. V. Kh. Fedotov, N. I. Kol’tsov, and P. M. Kos’yanov, Vestn. Tekhnol. Univ. 21 (12), 181 (2018).

    Google Scholar 

  15. V. Kh. Fedotov and N. I. Kol’tsov, Vestn. Tekhnol. Univ. 22 (1), 122 (2019).

    Google Scholar 

  16. V. Kh. Fedotov and N. I. Kol’tsov, Russ. J. Phys. Chem. B 13, 262 (2019).

    Article  CAS  Google Scholar 

  17. Ya. B. Zel’dovich, Zh. Fiz. Khim. 11, 685 (1938).

    Google Scholar 

  18. F. M. Krambeck, Arc. Rat. Mech. Anal. 38, 317 (1970).

    Article  Google Scholar 

  19. T. A. Akramov and G. S. Yablonskii, Zh. Fiz. Khim. 49, 1818 (1975).

    CAS  Google Scholar 

  20. V. I. Bykov, A. N. Gorban, and V. I. Dimitrov, React. Kinet. Catal. Lett. 12, 19 (1979).

    Article  CAS  Google Scholar 

  21. A. G. Zyskin, Yu. S. Snagovskii, and M. G. Slinko, React. Kinet. Catal. Lett. 17 (3-4), 257 (1981).

    Article  CAS  Google Scholar 

  22. A. G. Zyskin, Yu. S. Snagovskii, and M. G. Slinko, React. Kinet. Catal. Lett. 17, 263 (1981).

    Article  CAS  Google Scholar 

  23. A. G. Zyskin, Yu. S. Snagovskii, and M. G. Slin’ko, Kinet. Katal. 22, 1031 (1981).

    CAS  Google Scholar 

  24. A. N. Gorban, V. I. Bykov, and G. S. Yablonsky, Kinet. Katal. 24, 1239 (1983).

    CAS  Google Scholar 

  25. B. V. Alekseev and N. I. Kol’tsov, Vestn. Chuvash. Univ., Nos. 3–4, 34 (2000).

    Google Scholar 

  26. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers (Nauka, Moscow, 1978; McGraw-Hill, New York, 1961).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kh. Fedotov.

Ethics declarations

We have no conflicts of interest to declare.

Additional information

Translated by P. Vlasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotov, V.K., Kol’tsov, N.I. & Kosianov, P.M. Exact Invariants of Chemical Reactions with Participation of Two Reagents. Russ. J. Phys. Chem. B 14, 284–289 (2020). https://doi.org/10.1134/S1990793120020049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120020049

Keywords:

Navigation