Skip to main content
Log in

Ab initio Calculations of the Lowest \(^{1}\Sigma _{g}^{ + }\) States of the Na2 Dimer

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, AND SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The ground and 10 lowest excited \(^{1}\Sigma _{g}^{ + }\) adiabatic electronic states of the Na2 dimer are calculated using the pseudopotential method. The use of the basis [7s6p5d4f] of atomic orbitals makes it possible to extend the range of available internuclear distances up to 1.7–50 Å. It is found that the theoretical values of the Te and De constants are in a good agreement with the experimental ones. Herein you will find the sample calculations of the radial non-adiabatic coupling matrix elements enable to transform the basis of the adiabatic states to quasidiabatic one. It is found also that the Le Roy modified radius scales down the left boundary of an asymptotic range for the electronic state with the (3s + 5p) dissociation limit and for the higher states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. G. V. Golubkov, M. I. Manzhelii, and I. V. Karpov, Russ. J. Phys. Chem. B 5, 406 (2011).

    Article  CAS  Google Scholar 

  2. G. V. Golubkov, M. I. Manzhelii, and A. A. Lushnikov, Russ. J. Phys. Chem. B 8, 604 (2014).

    Article  CAS  Google Scholar 

  3. G. V. Golubkov, M. I. Manzhelii, A. A. Berlin, A. A. Lushnikov and L. V. Eppelbaum, Russ. J. Phys. Chem. B 12, 725 (2018).

    Article  CAS  Google Scholar 

  4. G. V. Golubkov, M. I. Manzhelii, A. A. Berlin, and A. A. Lushnikov, Russ. J. Phys. Chem. B 10, 77 (2016).

    Article  CAS  Google Scholar 

  5. G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Russ. J. Phys. Chem. B 8, 103 (2014).

    Article  CAS  Google Scholar 

  6. V. V. Kuverova, S. O. Adamson, A. A. Berlin, et al., Adv. Space Res. 64, 1876 (2019).

    Article  CAS  Google Scholar 

  7. W. C. Stwalley, J. Mol. Spectrosc. 330, 14 (2016).

    Article  CAS  Google Scholar 

  8. K. K. Verma, J. T. Bahns, A. R. Rajaei-Rizi, W. C. Stwalley, and W. T. Zemke, J. Chem. Phys. 78, 3599 (1983).

    Article  CAS  Google Scholar 

  9. K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Rev. Mod. Phys. 78, 483 (2006).

    Article  CAS  Google Scholar 

  10. N. Jayasundara, R. B. Anunciado, E. Burgess, S. Ashman, and L. Hüwel, J. Chem. Phys. 150, 064301 (2019).

    Article  PubMed  CAS  Google Scholar 

  11. L. Szasz and G. McGinn, J. Chem. Phys. 45, 2898 (1966).

    Article  CAS  Google Scholar 

  12. L. Szasz and G. McGinn, J. Chem. Phys. 48, 2997 (1968).

    Article  CAS  Google Scholar 

  13. L. Goodfriend, J. Mol. Spectrosc. 30, 111 (1969).

    Article  CAS  Google Scholar 

  14. A. C. Roach, J. Mol. Spectrosc. 43, 27 (1972).

    Article  Google Scholar 

  15. J. N. Bardsley, B. R. Junker, and D. W. Norcross, Chem. Phys. Lett. 37, 502 (1976).

    Article  CAS  Google Scholar 

  16. D. D. Konowalow, M. E. Rosenkrantz, and M. L. Olson, J. Chem. Phys. 72, 2612 (1980).

    Article  CAS  Google Scholar 

  17. A. Valance and Q. Nguyen Tuan, Phys. Lett. A 82, 116 (1981).

    Article  Google Scholar 

  18. W. J. Tango and R. N. Zare, J. Chem. Phys. 53, 3094 (1970).

    Article  CAS  Google Scholar 

  19. L. K. Lam, A. Gallagher, and M. M. Hessel, J. Chem. Phys. 66, 3550 (1977).

    Article  CAS  Google Scholar 

  20. W. J. Stevens, M. M. Hessel, P. J. Bertoncini, and A. C. Wahl, J. Chem. Phys. 66, 1477 (1977).

    Article  CAS  Google Scholar 

  21. D. D. Konowalow and P. S. Julienne, J. Chem. Phys. 72, 5815 (1980).

    Article  CAS  Google Scholar 

  22. G. H. Jeung, J. P. Malrieu, and J. P. Daudey, J. Chem. Phys. 77, 3571 (1982).

    Article  CAS  Google Scholar 

  23. G. Jeung, J. Phys. B: At., Mol. Phys. 16, 4289 (1983).

    Article  CAS  Google Scholar 

  24. G. H. Jeung, Phys. Rev. A 35, 26 (1987).

    Article  CAS  Google Scholar 

  25. A. Henriet and F. Masnou-Seeuws, J. Phys. B: At., Mol. Phys. 20, 671 (1987).

    Article  CAS  Google Scholar 

  26. A. Henriet and F. Masnou-Seeuws, J. Phys. B: At., Mol. Phys. 23, 219 (1990).

    Article  CAS  Google Scholar 

  27. A. Henriet, F. Masnou-Seeuws, and O. Dulieu, Z. Phys. D 18, 287 (1991).

    Article  CAS  Google Scholar 

  28. S. Magnier, Ph. Millie, O. Dulieu, and F. Masnou-Seeuws, J. Chem. Phys. 98, 7113 (1993).

    Article  CAS  Google Scholar 

  29. S. Magnier, M. Aubert-Frkon, O. Bouty, et al., J. Phys. B: At., Mol. Opt. Phys. 27, 1723 (1994).

    Article  CAS  Google Scholar 

  30. M. Gross and F. Spiegelmann, J. Chem. Phys. 108, 4148 (1998).

    Article  CAS  Google Scholar 

  31. R. F. Barrow, J. Verges, C. Effantin, K. Hussein, and J. d’Incan, Chem. Phys. Lett. 104, 179 (1984).

    Article  CAS  Google Scholar 

  32. F. Vigne-Maeder, Chem. Phys. 85, 139 (1984).

    Article  CAS  Google Scholar 

  33. B. Bussery and M. Aubert-Frecon, J. Mol. Spectrosc. 115, 169 (1986).

    Article  CAS  Google Scholar 

  34. M. Marinescu and A. Dalgarno, Phys. Rev. A 52, 311 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. M. Marinescu, Phys. Rev. A 56, 4764 (1997).

    Article  CAS  Google Scholar 

  36. T. Laue, P. Pellegrini, O. Dulieu, et al., Eur. Phys. J. D 26, 173 (2003).

    Article  CAS  Google Scholar 

  37. A. Sanli, B. Beser, J. R. Edwardson, et al., J. Chem. Phys. 143, 104304 (2015).

    Article  PubMed  CAS  Google Scholar 

  38. A. Sanli, X. Pan, S. Magnier, et al., J. Chem. Phys. 147, 204301 (2017).

    Article  PubMed  CAS  Google Scholar 

  39. D. Maynau and J. P. Daudey, Chem. Phys. Lett. 81, 273 (1981).

    Article  CAS  Google Scholar 

  40. M. Foucrault, Ph. Millie, and J. P. Daudey, J. Chem. Phys. 96, 1257 (1992).

    Article  CAS  Google Scholar 

  41. M. B. El Hadj Rhouma, H. Berriche, Z. B. Lakhdar, and F. Spiegelman, J. Chem. Phys. 116, 1839 (2002).

    Article  CAS  Google Scholar 

  42. H. Berriche, J. Mol. Struct.: THEOCHEM 663, 101 (2003).

    Article  CAS  Google Scholar 

  43. N. Khelifi, J. Russ. Laser Res. 29, 274 (2008).

    Article  CAS  Google Scholar 

  44. N. Mabrouk and H. Berriche, J. Phys. B: At., Mol. Opt. Phys. 41, 155101 (2008).

    Article  CAS  Google Scholar 

  45. https://doi.org/10.1080/00268976.2019.1605098

    Article  CAS  Google Scholar 

  46. N. Mabrouk and H. Berriche, Russ. J. Phys. Chem. A 91, 1475 (2017).

    Article  Google Scholar 

  47. N. Khelifi, R. Dardouri, O. M. Al-Dossary, and B. Oujia, J. Russ. Laser Res. 30, 172 (2009).

    Article  CAS  Google Scholar 

  48. M. Aymar and O. Dulieu, J. Chem. Phys. 122, 204302 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. P. Fuentealba, H. Preuss, H. Stoll, and L. von Szentpaly, Chem. Phys. Lett. 89, 418 (1982).

    Article  CAS  Google Scholar 

  50. T. Leininger, A. Nicklass, W. Kuchle, et al., Chem. Phys. Lett. 255, 274 (1996).

    Article  CAS  Google Scholar 

  51. W. Müller, J. Flesch, and W. Meyer, J. Chem. Phys. 80, 3297 (1984).

    Article  Google Scholar 

  52. W. Müller and W. Meyer, J. Chem. Phys. 80, 3311 (1984).

    Article  Google Scholar 

  53. H. S. Lee, Y. S. Lee, and G. H. Jeung, Chem. Phys. Lett. 325, 46 (2000).

    Article  CAS  Google Scholar 

  54. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, et al., MOLPRO, Ver. 2010.1, a Package of ab initio Programs. http://www.molpro.net.

  55. J. E. Sansonetti, J. Phys. Chem. Ref. Data 37, 1659 (2008).

    Article  CAS  Google Scholar 

  56. H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985).

    Article  CAS  Google Scholar 

  57. L. G. Gray, X. Sun, and K. B. MacAdam, Phys. Rev. A 38, 4985 (1988).

    Article  CAS  Google Scholar 

  58. N. C. Pyper, C. G. Pike, and P. P. Edwards, J. Am. Chem. Soc. 115, 1468 (1993).

    Article  CAS  Google Scholar 

  59. M. Masili, S. Carlos, and J. J. De Groote, Phys. Rev. A 70, 054501 (2004).

    Article  CAS  Google Scholar 

  60. J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B: At., Mol. Opt. Phys. 43, 202001 (2010).

    Article  CAS  Google Scholar 

  61. A. J. Taylor, K. M. Jones, and A. L. Schawlow, J. Opt. Soc. Am. 73, 994 (1983).

    Article  CAS  Google Scholar 

  62. W. T. Zemke and W. C. Stwalley, J. Chem. Phys. 100, 2661 (1994).

    Article  CAS  Google Scholar 

  63. C. Effantin, J. d’Incan, A. J. Ross, R. F. Barrow, and J. Verges, J. Phys. B: At., Mol. Phys. 17, 1515 (1984).

    Article  CAS  Google Scholar 

  64. Chin-Chun Tsai, T.-J. Whang, J. T. Bahns, and W. C. Stwalley, J. Chem. Phys. 99, 8480 (1993).

    Article  Google Scholar 

  65. Chin-Chun Tsai, J. T. Bahns, H. Wang, T.-J. Whang, and W. C. Stwalley, J. Chem. Phys. 101, 25 (1994).

    Article  Google Scholar 

  66. H. Wang, T.-J. Whang, A. Lyyra, L. Li, and W. C. Stwalley, J. Chem. Phys. 94, 4756 (1991).

    Article  CAS  Google Scholar 

  67. Chin-Chun Tsai, J. T. Bahns, and W. C. Stwalley, J. Chem. Phys. 100, 768 (1994).

    Article  Google Scholar 

  68. Chin-Chun Tsai, J. T. Bahns, and W. C. Stwalley, J. Mol. Spectrosc. 167, 429 (1994).

    Article  Google Scholar 

  69. S. Jellali, H. Habli, L. Mejrissi, B. Oujia, and F. X. Gadea, J. Phys. Chem. A 123, 544 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Ji Bing, Chin-Chun Tsai, and W. C. Stwalley, Chem. Phys. Lett. 236, 242 (1995).

    Article  Google Scholar 

  71. W. C. Martin, J. Opt. Soc. Am. 70, 784 (1980).

    Article  CAS  Google Scholar 

  72. G. V. Golubkov, G. K. Ivanov, E. M. Balashov, et al., J. Exp. Theor. Phys. 87, 56 (1998).

    Article  Google Scholar 

  73. G. V. Golubkov and G. K. Ivanov, Khim. Fiz. 22 (10), 25 (2003).

    CAS  Google Scholar 

  74. G. V. Golubkov, G. K. Ivanov, and M. G. Golubkov, Khim. Fiz. 24 (6), 3 (2005).

    Google Scholar 

  75. G. V. Golubkov, G. K. Ivanov, and M. G. Golubkov, Khim. Fiz. 24 (9), 3 (2005).

    Google Scholar 

Download references

Funding

This work has been performed within the framework of State Assignment of the Ministry of Science and Higher Education of the Russian Federation (project 0082-2019-0017, registration code AAAA-A19-119010990034-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Adamson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamson, S.O., Kharlampidi, D.D., Nabiev, S.S. et al. Ab initio Calculations of the Lowest \(^{1}\Sigma _{g}^{ + }\) States of the Na2 Dimer. Russ. J. Phys. Chem. B 14, 235–242 (2020). https://doi.org/10.1134/S1990793120020165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120020165

Keywords:

Navigation