Skip to main content
Log in

The Pattern of DNA and Histone H3 Methylation in Rat Brain in Response to Severe Hypobaric Hypoxia and Hypoxic Postconditioning

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Methylation of histone H3 Lys4 (meН3К4) and Lys9 (meН3К9), as well as DNA methylation (meDNA), was investigated in rat hippocampal and neocortex neurons in an original model of severe hypobaric hypoxia (SHH) and hypoxic postconditioning (PostC). It was shown that, in hippocampal field CA1, a day after SHH, the content of meH3K4 increased, while the level of meDNA decreased. Later, the amount of meH3K9 decreased and the meDNA content increased. PostC increased meH3K4, normalized the level of meH3K9, and decreased the level of meDNA in the hippocampal field CA1 of rats that had survived SHH. In the neocortex, significant changes were detected only 1–2 days after SHH, consisting in the stimulation of histone H3 methylation and decreased meDNA. Thus, a complex pattern of changes in the methylation of H3 histone and DNA was observed in both the hippocampus and neocortex in response to SHH. However, the protective effect of PostC was accompanied by the correction of only hippocampal reactions, while methylation in the neocortex returned to the initial level regardless of the PostC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bhutani, N., Burns, D.M., and Blau, H.M., DNA demethylation dynamics, Cell, 2011, vol. 146, pp. 866–872.

    Article  CAS  Google Scholar 

  2. Chen, H., Yan, Y., Davidson, T.L., Shinkai, Y., and Costa, M., Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells, Cancer Res., 2006, vol. 66, pp. 9009–9016.

    Article  CAS  Google Scholar 

  3. Chen, H., Yan, Y., Davidson, T.L., Shinkai, Y., and Costa, M., Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells, Cancer Res., 2006, vol. 66, pp. 9009–9016.

    Article  CAS  Google Scholar 

  4. Churilova, A.V., Glushchenko, T.S., and Samoilov, M.O., Changes in the expression of BCL-2 antiapoptotic protein in rat neocortex and hippocampus under the influence of various modes of hypobaric hypoxia, Morfologiia, 2014, vol. 146, no. 5, pp. 7–13.

    CAS  PubMed  Google Scholar 

  5. Cimmino, F., Avitabile, M., Lasorsa, V.A., Montella, A., Pezone, L., Cantalupo, S., Visconte, F., Corrias, MV., I-olascon, A., and Capasso, M., HIF-1 transcription activity: HIF1A driven response in normoxia and in hypoxia, BMC Med. Genet., 2019, vol. 20, p. 37. https://doi.org/10.1186/s12881-019-0767-1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Costa, M., Davidson, T.L., Chen, H., Ke, Q., Zhang, P., Yan, Y., Huang, C., and Kluz, T., Nickel carcinogenesis: epigenetics and hypoxia signaling, Mutat. Res., 2005, vol. 592, pp. 79–88.

    Article  CAS  Google Scholar 

  7. Freitag, M. and Selker, E.U., Controlling DNA methylation: many roads to one modification, Curr. Opin. Genet. Dev., 2005, vol. 15, pp. 191–199.

    Article  CAS  Google Scholar 

  8. Johnson, A.B., Denko, N., and Barton, M.C., Hypoxia induces a novel signature of chromatin modifications and global repression of transcription, Mutat. Res., 2008, vol. 640, pp. 174–179.

    Article  CAS  Google Scholar 

  9. Kirmes, I., Szczurek, A., Prakash, K., Charapitsa, I., Heiser, C., Musheev, M., Schock, F., Fornalczyk, K., Ma, D., and Birk, U., A transient ischemic environment induces reversible compaction of chromatin, Genome Biol., 2015, vol. 16, p. 246. https://doi.org/10.1186/s13059-015-0802-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kirova, Yu.I., Impact of hypoxia on dynamics of the post-hypoxia HIF-1a level in neocortex and adaptation forming in rats with different resistance to hypoxia, Pathol. Physiol. Exp. Ther., 2012, vol. 56, no. 3, pp. 51–55.

    Google Scholar 

  11. Koslowski, M., Luxemburger, U., Tureci, O., and Sahin, U., Tumor-associated CpG demethylation augments hypoxia-induced effects by positive autoregulation of HIF-1alpha, Oncogene, 2011, vol. 30, pp. 876–882.

    Article  CAS  Google Scholar 

  12. Mimura, I., Nangaku, M., Kanki, Y., Tsutsumi, S., Inoue, T., Kohro, T., Yamamoto, S., Fujita, T., Shimamura, T., Suehiro, J., Taguchi, A., Kobayashi, M., Tanimura, K., Inagaki, T., Tanaka, T., Hamakubo, T., Sakai, J., Aburatani, H., Kodama, T., and Wada, Y., Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A, Mol. Cell Biol., 2012, vol. 32, pp. 3018–3032.

    Article  CAS  Google Scholar 

  13. Olcina, M.M., Foskolou, I.P., Anbalagan, S., Senra, J.M., Pires, I.M., Jiang, Y., Ryan, A.J., and Hammond, E.M., Replication stress and chromatin context link ATM activation to a role in DNA replication, Mol. Cell., 2013, vol. 52, pp. 758–766.

    Article  CAS  Google Scholar 

  14. Perez-Perri, J.I., Acevedo, J.M., and Wappner, P., Epigenetics: new questions on the response to hypoxia, Int. J. Mol. Sci., 2011, vol. 12, pp. 4705–4721.

    Article  CAS  Google Scholar 

  15. Prickaerts, P., Adriaens, M.E., Beucken, T.V., Koch, E., Dubois, L., Dahlmans, V.E., Gits, C., Evelo, C.T., Chan-Seng-Yue, M., and Wouters, B.G., Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3K27me3, Epigenetics Chromatin, 2016, vol. 9, p. 46. https://doi.org/10.1186/s13072-016-0086-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rybnikova, E., Vorobyev, M., Pivina, S., and Samoilov, M., Postconditioning by mild hypoxic exposures reduces rat brain injury caused by severe hypoxia, Neursci. Lett., 2012, vol. 513, pp. 100–105.

    Article  CAS  Google Scholar 

  17. Samoilov, M.O. and Rybnikova, E.A., Molecular-cellular and hormonal mechanisms of induced tolerance of the brain to extreme environmental factors, Neurosci. Behav. Physiol., 2012, vol. 43, no. 7, pp. 827–837.

    Article  Google Scholar 

  18. Samoilov, M., Churilova, A., Gluschenko, T., and Rybnikova, E., Neocortical pCREB and BDNF expression under different modes of hypobaric hypoxia: role in brain hypoxic tolerance in rats, Acta Histochem., 2014, vol. 116, pp. 949–957.

    Article  CAS  Google Scholar 

  19. Samoilov, M.O., Sidorova, M.V., and Glushchenko, T.S., The pattern of the expression of hypoxia-inducible factor (HIF-1α) in the neocortex and hippocampus of rats after the presentation of different modes of hypobaric hypoxia, Neurochem. J., 2015, vol. 9, no. 4, pp. 299–305.

    Article  CAS  Google Scholar 

  20. Samoilov, M.O., Churilova, A.V., Glushchenko, T.S., and Rybnikova, E.A., Effects of different modes of hypobaric hypoxia on the content of epigenetic factors in the rat in neurons of rat neocortex, Bull. Exp. Biol. Med., 2016, vol. 162, no. 6, pp. 722–725.

    Article  Google Scholar 

  21. Stroev, S.A., Pelto-Huikko, M.T., Tyul’kova, E.I., Samoilov, M.O., and Vataeva, L.A., Effects of prenatal hypoxia on expression of thioredoxin-1 in the rat hippocampus at different stages of postnatal ontogeny, Neurochem. J., 2011, vol. 5, no. 3, pp. 200–204.

    Article  CAS  Google Scholar 

  22. Suganuma, T. and Workman, J.L., Signals and combinatorial functions of histone modifications, Annu. Rev. Biochem., 2011, vol. 80, pp. 473–499.

    Article  CAS  Google Scholar 

  23. Tausendschon, M., Dehne, N., and Brune, B., Hypoxia causes epigenetic gene regulation in macrophages by attenuating Jumonji histone demethylase activity, Cytokine, 2011, vol. 53, pp. 256–262.

    Article  Google Scholar 

  24. Vetrovoy, O.V., Rybnikova, E.A., Glushchenko, T.S., Baranova, K.A., and Samoilov, M.O., Mild hypobaric hypoxic postconditioning increases the expression of HIF-1α and erythropoietin in the CA1 field of the hippocampus of rats that survive after severe hypoxia, Neurochem. J., 2014a, vol. 8, no. 2, pp. 103–108.

    Article  CAS  Google Scholar 

  25. Vetrovoy, O.V., Rybnikova, Ye.A., Glushchenko, T.S., and Samoilov, M.O., Effect of hypoxic postconditioningon on the expression of antyapoptotic protein BCL-2 and neuroprotein BDNF in CA1 hippocampal field of rats surviving severe hypoxia, Morfologiia, 2014b, vol. 145, no. 2, pp. 16–20.

    Google Scholar 

  26. Vetrovoy, O., Tulkova, E., Sarieva, K., Kotryahova, E., Zenko, M., and Rybnikova, E., Neuroprotective effect of hypobaric hypoxic postconditioning is accompanied by DNA protection and lipid peroxidation changes in rat hippocampus, Neurosci. Lett., 2017a, vol. 639, pp. 49–52.

    Article  CAS  Google Scholar 

  27. Vetrovoy, O.V., Rybnikova, E.A., and Samoilov, M.O., Cerebral mechanisms of hypoxic/ischemic postconditioning, Biochemistry (Moscow), 2017b, vol. 82, no. 3, pp. 392–400.

    CAS  PubMed  Google Scholar 

  28. Vetrovoy, O.V., Glushchenko, T.S., Sarieva, K.V., Tyulkova, E.I., Aramisova, R.M., and Samoilov, M.O., The acetylation of histone H3 at Lys24 is accompanied by delayed expression of neuroprotective proteins Bcl-2 and BDNF in the neocortex of rats exposed to severe hypoxia: the effect of postconditioning, Neurochem. J., 2018, vol. 12, no. 3, pp. 241–247.

  29. Vetrovoy, O.K., Sarieva, O., Galkina, N., Eschenko, A., Lyanguzov, T., Gluschenko, E., Tyulkova, E., and Rybnikova, E., Neuroprotective mechanism of hypoxic post-conditioning involves HIF1-associated regulation of the pentose phosphate pathway in rat brain, Neurochem. Res., 2019. https://doi.org/10.1007/s11064-018-2681-x

  30. Walczak-Drzewiecka, A., Ratajewski, M., Pulaski, L., and Dastych, J., DNA methylation-dependent suppression of HIF1A in an immature hematopoietic cell line HMC-1, Biochem. Biophys. Res. Commun., 2010, vol. 39, pp. 1028–1032.

    Article  Google Scholar 

  31. Watson, J.A., Watson, C.J., McCann, A., and Baugh, J., Epigenetics, the epicenter of the hypoxic response, Epigenetics, 2010, vol. 5, pp. 293–296.

    Article  CAS  Google Scholar 

  32. Weber, M., Hellmann, I., Stadler, M.B., Ramos, L., Pääbo, S., Rebhan, M., and Schübeler, D., Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome, Nat. Genet., 2007, vol. 39, pp. 457–466.

    Article  CAS  Google Scholar 

  33. Xia, X., Lemieux, M.E., Li, W., Carroll, J.S., Brown, M., Liu, X.S., and Kung, A.L., Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 4260–4265.

    Article  CAS  Google Scholar 

  34. Yang, J., Ledaki, I., Turley, H., Gatter, K.C., Montero, J.C., Li, J.L., and Harris, A.L., Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases, Ann. N.Y. Acad. Sci., 2009, vol. 1177, pp. 185–197.

    Article  CAS  Google Scholar 

  35. Zhao, Z-Q., Corvera, J., and Halkos, M., Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning, Am. J. Physiol. Heart Circ. Physiol., 2003, vol. 285, pp. H579–H588.

    Article  CAS  Google Scholar 

  36. Zhou, X., Sun, H., Chen, H., Zavadil, J., Kluz, T., Arita, A., and Costa, M., Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase, Cancer Res., 2010, vol. 70, pp. 4214–4221.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out on animals provided by the IF Biological Collection of the Russian Academy of Sciences.

Funding

The study was supported by the “Program of Fundamental Scientific Research of State Academies for 2014–2020” (GP-14, section 65) and the Russian Foundation for Basic Research (projects no. 17-04-00624 and no. 17-04-01592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Tyulkova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. The experiments were performed in accordance with the requirements formulated in the Directives of the European Community (86/609/EEC) on the protection of animals used for experimental research. The experimental protocols were approved by the Commission on the Humane Treatment of Animals of the Pavlov Institute of Physiology, Russian Academy of Sciences.

Additional information

Translated by I. Fridlyanskaya

Abbreviations: SHH—severe hypobaric hypoxia, MHH—moderate hypobaric hypoxia, PostC—postconditioning, meDNA—DNA methylation, meH3K4 and meН3К9—methylation of histone H3 Lys4 and Lys9, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetrovoy, O.V., Tyulkova, E.I., Stratilov, V.A. et al. The Pattern of DNA and Histone H3 Methylation in Rat Brain in Response to Severe Hypobaric Hypoxia and Hypoxic Postconditioning. Cell Tiss. Biol. 14, 36–42 (2020). https://doi.org/10.1134/S1990519X20010101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X20010101

Keywords:

Navigation