Skip to main content
Log in

The Effect of Low Doses of Ionizing Radiation on Expression of Genes and Noncoding RNA in Normal and Malignant Human Cells

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The effect of X-ray radiation (0.1 Gy) on the expression of a number of genes and regulatory RNA (miRNA and long noncoding RNA) in human lymphocytes and T-lymphoblastic cells (Jurkat cells) was studied. One hour after cell irradiation with a low dose of radiation, lymphocytes displayed p53 expression and a decreased level of mature miR-27a and miR-181a having mRNA of gene p53 as target. These cells also had inhibited NFkB activity, which was found from reduced mRNA content of RhoAcdc42 and IL6 genes. By 4 h, their expression was normalized. Unlike in the case of normal cells, increased content of mRNA of NFkB gene (p65) and mRNA of its target IL6 gene was observed in Jurkat cells during this period. Repeated irradiation of cells with 5 Gy carried out after 4 h showed the radiation adaptive response (AO) according to the criterion of lymphocyte survival and its absence in Jurkat cells. The difference between groups of 5 Gy and 0.1 + 5 Gy in lymphocytes that survived after 20 h revealed common AO features (mRNA of p53 gene, NEAT1, miR-181a, miR-107). The results indicate the activation of various intracellular systems after the stress with low doses of radiation on lymphocytes and Jurkat cells. This approach can be used to optimize the efficacy of radiation therapy when preirradiation with a small dose of radiation increases the radioresistance of normal tissues surrounding a tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Adriaens, C., Standaert, L., Barra, J., Latil, M., Verfaillie, A., Kalev, P., Boeckx, B., Wijnhoven, P.W.G., Radaelli, E., Vermi, W., Leucci, E., Lapouge, G., Beck, B., van den Oord, J., Nakagawa, S., Hirose, T., Sablina, A.A., Lambrechts, D., Aerts, S., Blanpain, C. and Marine, J.-C., P53 Induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress rsponse and chemosensitivity, Nat. Med., 2016, vol. 22, pp. 861–868.

    Article  CAS  Google Scholar 

  2. Ahmed, K.M., Nantajit, D., Fan, M., Murley, J.S., Grdina, D.J., and Li, J.J., Coactivation of ATM/ERK/NF-kappaB in the low-dose radiation-induced radioadaptive response in human skin keratinocytes, Free Radic. Biol. Med., 2009, vol. 46, pp. 1543–1550.

    Article  CAS  Google Scholar 

  3. Bae, S., Kim, K., Cha, H.J., Choi, Y., Shin, S.H., An, I.S., Lee, J.H., Lee, S.J., Kim, J.Y., Nam, S.Y., and An, S., Low-dose γ-irradiation induces dual radio-adaptive responses depending on the post-irradiation time by altering microRNA expression profiles in normal human dermal fibroblasts, Int. J. Mol. Med., 2015, vol. 35, pp. 227–237.

    Article  CAS  Google Scholar 

  4. Boaventura, P., Durães, C., Mendes, A., Costa, N.R., Chora, I., Ferreira, S., Araújo, E., Lopes, P., Rosa, G., Marques, P., Tavares, S., Chaves, V., Bettencourt, P., Oliveira, I., Costa, F., Ramos, I., Teles, M.J., Guimarães, J.T., and, Soares, P., Is low-dose radiation exposure a risk factor for atherosclerosis disease?, Radiat. Res., 2018, vol. 189, pp. 418–424.

    Article  CAS  Google Scholar 

  5. Boominathan, L., The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex, PLoS One, 2010, vol. 5. e10615. https://doi.org/10.1371/journal.pone.0010615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fachin, A.L., Mello, S.S., Sandrin-Garcia, P., Junta, C.M., Donadi, E.A., Passos, G.A., and Sakamoto-Hojo, E.T., Gene expression profiles in human lymphocytes irradiated in vitro with low doses of gamma rays, Radiat. Res., 2007, vol. 168, pp. 650–665.

    Article  CAS  Google Scholar 

  7. Gandhi, N., Cellular adaptive response and regulation of HIF after low dose gamma-radiation exposure, Int. J. Radiat. Biol., 2018, vol. 94, pp. 809–814.

    Article  CAS  Google Scholar 

  8. Gioia, L., Siddique, A., Head, S.R., Salomon, D.R., and Su, A.I., A genome-wide survey of mutations in the Jurkat cell line, BMC Genomics, 2018, vol 19, p. 334. https://doi.org/10.1186/s12864-018-4718-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grossi, E., Sánchez, Y., and Huarte, M., Expanding the p53 regulatory network: lncRNAs take up the challenge, Biochim. Biophys. Acta—Gene Regulatory Mecanisms, 2016, vol. 1859, pp. 200–208.

  10. Gruel, G., Voisin, P., Vaurijoux, A., Roch-Lefevre, S., Gregoire, E., Maltere, P., Petat, C., Gidrol, X., Voisin, P., Roy, L., Broad modulation of gene expression in CD4+ lymphocyte subpopulations in response to low doses of ionizing radiation, Radiat. Res., 2008, vol. 170, pp. 335–344.

    Article  CAS  Google Scholar 

  11. Hennessy, E.J., Sheedy, F.J., Santamaria, D., Barbacid, M., and O’Neill, L.A., Toll-like receptor-4 (TLR4) down-regulates microRNA-107, increasing macrophage adhesion via cyclin-dependent kinase 6, J. Biol. Chem., 2011, vol. 286, pp. 25 531–25 539.

    Article  Google Scholar 

  12. Jiang, H., Xu, Y., Li, W., Ma, K., Cai, L., and Wang, G., Low-dose radiation does not induce proliferation in tumor cells in vitro and in vivo, Radiat. Res., 2008, vol. 170, pp. 477–487.

    Article  CAS  Google Scholar 

  13. Kawamura, K., Qi, F., and Kobayashi, J., Potential relationship between the biological effects of low-dose irradiation and mitochondrial ROS production, J. Radiat. Res., 2018, vol. 59, suppl. 2. https://doi.org/10.1093/jrr/rrx091

  14. Komova, O., Krasavin, E., Nasonova, E., Mel’nikova, L., Shmakova, N., Cunha, M., Testa, E., and Beuve, M., Relationship between radioadaptive response and individual radiosensitivity to low doses of gamma radiation: an extended study of chromosome damage in blood lymphocytes of three donors, Int. J. Radiat. Biol., 2018, vol. 94, pp. 54–61.

    Article  CAS  Google Scholar 

  15. Luo, Z., Cui, R., Tili, E., and Croce, C., Friend or foe: microRNAs in the p53 network, Cancer Lett., 419, pp. 96–102. https://doi.org/10.1016/j.canlet.2018.01.013

  16. Maqbool, R., Lone, S.N., and Ul Hussain, M., Post-transcriptional regulation of the tumor suppressor p53 by a novel miR-27a, with implications during hypoxia and tumorigenesis, Biochem. J., 2016, vol. 473, pp. 3597–3610.

    Article  CAS  Google Scholar 

  17. Mikhailov, V.F., Shulenina, L.V., Vasilyeva, I.M., Saleeva, D.V., and Zasukhina, G.D., Some aspects of carcinogenesis associated with genetic and epigenetic factors, Biol. Bull. Rev., 2019, vol. 9, no. 2, pp. 129–144.

    Article  Google Scholar 

  18. O’Leary, V.B., Ovsepian, S.V., Carrascosa, L.G., Buske, F.A., Radulovic, V., Niyazi, M., Moertl, S., Trau, M., Atkinson, M.J., and Anastasov, N., PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation, Cell Rep., 2015, vol. 11, pp. 474–485.

    Article  Google Scholar 

  19. Oppenheim, A. and Lahav, G., The puzzling interplay between p53 and Sp1, Aging (Albany, NY), 2017, vol. 9, pp. 1355–1356.

    Article  CAS  Google Scholar 

  20. Pajic, J., Rovcanin, B., Kekic, D., Jovicic, D., and Milovanovic, A.P.S., The influence of redox status on inter-individual variability in the response of human peripheral blood lymphocytes to ionizing radiation, Int. J. Radiat. Biol., 2018, vol. 94, pp. 569–575.

    Article  CAS  Google Scholar 

  21. Pelevina, I.I., Aleshenko, A.V., Antoshchina, M.M., Biriukov, V.A., Vorobyeva, N.Yu., Karyakin, O.B., Ktitorova, O.B., Minaeva, N.G., and Serebryanyi, A.M., About some ways of radio-adaptive response formation, Radiats. Biol. Radioecol., 2017, vol. 57, no. 6, pp. 565–572.

    Google Scholar 

  22. Raut, S.K., Singh, G.B., Rastogi, B., Saikia, U.N., Mittal, A., Dogra, N., Prasad, R., and Khullar, M., miR-30c and miR-181a synergistically modulate p53–p21 pathway in diabetes induced cardiac hypertrophy, Mol. Cell. Biochem., 2016, vol. 417, pp. 191–203.

    Article  CAS  Google Scholar 

  23. Serebryanyi, A.M., On the plurality of the ways of radiation adaptive response formation in human peripheral blood lymphocytes, Tsitologiia, 2015, vol. 57, no. 5, pp. 319–329.

    CAS  PubMed  Google Scholar 

  24. Shelke, S., and Das, B., Dose response and adaptive response of non-homologous end joining repair genes and proteins in resting human peripheral blood mononuclear cells exposed to gamma radiation, Mutagenesis, 2015, vol. 30, pp. 365–379.

    Article  CAS  Google Scholar 

  25. Shulenina, L.V., Mikhailov, V.F., Raeva, N.F., Saleeva, D.V., Neznanova, M.V., and Zasuhina, G.D., microRNA in the blood of prostate cancer patients as a possible indicator of development of early complications of radiotherapy, Radiats. Biol. Radioecol., 2017, vol. 57, no. 6, pp. 598–607.

    Google Scholar 

  26. Tang, F.R. and Loke, W.R., Molecular mechanisms of low dose radiation-induced hormesis, adaptive response, radio resistance, bystander effects and genomic instability, Int. J. Radiat. Biol., 2015, vol. 91, pp. 13–27.

    Article  CAS  Google Scholar 

  27. Tapio, S. and Jacob, V., Radioadaptive response revisited, Radiat. Environ Biophys., 2007, vol. 46, pp. 1–12.

    Article  CAS  Google Scholar 

  28. Yang, G., Li, W., Jiang, H., Liang, X., Zhao, Y., Yu, D., Zhou, L., Wang, G., Tian, H., Han, F., Cai, L., and Cui, J., Low-dose radiation may be a novel approach to enhance the effectiveness of cancer therapeutics, Int. J. Cancer, 2016a, vol. 139, pp. 2157–2168.

    Article  CAS  Google Scholar 

  29. Yang, G., Yu, D., Li, W., Zhao, Y., Wen, X., Liang, X., Zhang, X., Zhou, L., Hu, J., Niu, C., Tian, H., Han, F., Chen, X., Dong, L., Cai, L., and Cui, J., Distinct biological effects of low-dose radiation on normal and cancerous human lung cells are mediated by ATM signaling, Oncotarget, 2016b, vol. 7, pp. 71 856–71 872.

    Google Scholar 

  30. Yen, P.N., Lin, I.F., Chang, W.P., Wang, J.D., Chang, T.C., Kuo, K.L., Hwang, J.S., Liu, I.C., Chen, Y.T., and Yang, C.C., Risk factors of depression after prolonged low-dose environmental radiation exposure, Int. J. Radiat. Biol., 2014, vol. 90, pp. 859–866.

    Article  CAS  Google Scholar 

  31. Yuan, D., Pan, Y., Zhang, J., and Shao, C., Role of nuclear factor-kappaB and P53 in radioadaptive response in chang live cells, Mutat. Res., 2010, vol. 688, pp. 66–71.

    Article  CAS  Google Scholar 

  32. Zasukhina, G.D., Adaptive response—biological tendency: facts, hypothesis, questions, Radiats. Biol. Radioecol., 2008, vol. 48, no. 4, pp. 464–473.

    CAS  PubMed  Google Scholar 

  33. Zasukhina, G.D., Mikhailov, V.F., Shulenina, L.V., and Vasilyeva, I.M., Role of non-coding RNA in human cells after radiation exposure, Tsitologiia, 2017, vol. 59, no. 9, pp. 563–573.

    Google Scholar 

  34. Zhang, A., Xu, M., and Mo, Y.-Y., Role of the lncRNA–p53 regulatory network in cancer, J. Mol. Cell Biol., 2014, vol. 6, pp. 181–191.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Vavilov Institute of General Genetics, Russian Academy of Sciences, state order no. 0112-2018-0005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. F. Mikhailov or G. D. Zasukhina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.Statement of compliance with standards of research involving humans as subjects. This study was carried out in accordance with the standards of Good Clinical Practice and the principles of the Helsinki Declaration of the World Medical Association (1964, 2004). Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by I. Fridlyanskaya

   Abbreviations: AR—adaptive response, lncRNA—long-noncoding RNA, RT—radiation therapy, miR—microRNA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, V.F., Shulenina, L.V., Raeva, N.F. et al. The Effect of Low Doses of Ionizing Radiation on Expression of Genes and Noncoding RNA in Normal and Malignant Human Cells. Cell Tiss. Biol. 13, 423–433 (2019). https://doi.org/10.1134/S1990519X19060063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X19060063

Keywords:

Navigation