Skip to main content
Log in

Sensitivity Analysis and Practical Identifiability of Some Mathematical Models in Biology

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We study the identifiability of some mathematical models of spreading TB and HIV coinfections in a population and the dynamics of HIV-infection at the cellular level. Sensitivity analysis is carried out using the orthogonal method and the eigenvalue method which are based on studying the properties of the sensitivity matrix and show the effect of the model coefficient change on simulation results. Practical identifiability is investigated which determines the possibility of reconstructing coefficients from the noisy experimental data. The analysis is performed using the correlation matrix and Monte Carlo method, while taking into consideration the Gaussian noise in measurements. The results of numerical calculations are presented on whose basis we obtain the identifiable sets of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Adams, H. T. Banks, M. Davidian, H.-D. Kwon, H. T. Tran, S. N. Wynne, and E. S. Rosenberg, “HIV Dynamics: Modeling, Data Analysis, and Optimal Treatment Protocols,” J. Comput. Appl. Math. 184, 10–49 (2005).

    Article  MathSciNet  Google Scholar 

  2. L. W. Roeger, Z. Feng, and C. Castillo-Chavez, “Modelling TB and HIV Co-Infections,” Math. Biosci. Eng. 6 (4), 815–837 (2009).

    Article  MathSciNet  Google Scholar 

  3. E. Carson and C. Cobelli, Modelling Methodology for Physiology and Medicine (Acad. Press, New York, 2001).

    Google Scholar 

  4. C. Cobelli and E. Carson, Introduction to Modelling in Physiology and Medicine (Acad. Press, New York, 2008).

    Google Scholar 

  5. S. Audology and L. Angio, “On the Identifiability of Linear Compartmental System: A Revisited Transfer Function Approach Based on Topological Properties,” Math. Biosci. 10 (5), 10–17 (1983).

    MathSciNet  Google Scholar 

  6. S. I. Kabanikhin, “Definitions and Examples of Inverse and Ill-Posed Problems,” J. Inverse Ill-Posed Probl. 16, 317–357 (2008).

    MathSciNet  MATH  Google Scholar 

  7. H. Miao, X. Xia, A. S. Perelson, and H. We, “On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics,” SIAM Rec. Soc. Ind. Appl. Math. 53 (1), 3–39 (2011).

    MathSciNet  MATH  Google Scholar 

  8. K. Glover and J. Willems, “Parametrization of Linear Dynamical Systems: Canonical Forms and Identifiability,” IEEE Trans. Automat. Control. 19, 640–646 (1974).

    Article  MathSciNet  Google Scholar 

  9. R. Bellman and K. Astrom, “On Structural Identifiability,” Math. Biosci. 30 (4), 65–74 (1970).

    Google Scholar 

  10. M. Grewal and K. Glover, “Identifiability of Linear and Nonlinear Dynamical Systems,” IEEE Trans. Automat. Control 21 (6), 833–837 (1976).

    Article  MathSciNet  Google Scholar 

  11. S. Vajda, “Identifiability of First Order Reaction Systems,” React. Kinet. Catal. Lett. 11 (1), 39–43 (1989).

    Article  Google Scholar 

  12. C. Cobeli and J. DiStefano, “Parameter and Structural Identifiability Concepts and Ambiguities: A Critical Review and Analysis,” Amer. J. Physiol. Reg. I, 3 (3), 369–380 (1980).

    Google Scholar 

  13. T. Tunali and T. Tarn, “New Results for Identifiability of Nonlinear Systems,” IEEE Trans. Automat. Control 15, 45–51 (1987).

    MathSciNet  MATH  Google Scholar 

  14. V. F. Shcherbak, “Conditions for Identifiability of Dynamical Systems,” Mat. Fiz. 34, 105–108 (1983).

    MATH  Google Scholar 

  15. A. A. Levakov, “Identifiability of Nonlinear Systems,” Differentsial’nye Uravneniya 19 (6), 1074–1078 (1983).

    MathSciNet  Google Scholar 

  16. V. V. Karelin, Methods for Identification and Optimization of Control Systems: Methodological Directions (St. Petersburg Univ., St. Petersburg, 1990) [in Russian].

    Google Scholar 

  17. A. A. Lomov, “Simultaneous Identifiability of Coefficients of Linear Difference Equations of the Object and Additive Disturbances,” Vestnik Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 15 (4), 46–57 (2015).

    Google Scholar 

  18. T. V. Avdeenko and S. A. Kargin, “Analysis of Identifiability of Linear Dynamical Models with Application of Separators of a Parametric Space,” Sibir. Zh. Indust. Mat. 9 (3), 3–16 (2006).

    MATH  Google Scholar 

  19. M. Saccomani and C. Cobeli, “Qualitative Experiment Design in Physiological System Identification,” IEEE Control System 3 (12), 18–23 (1992).

    Google Scholar 

  20. R. Brown, “Compartmental System Analysis: State of the Art,” IEEE Trans. Biomed. Eng. 14 (3), 31–41 (1980).

    Google Scholar 

  21. R. Brown, “Identifiability: Role in Design of Pharmacokinetic Experiments,” IEEE Trans. Biomed. Eng. 14 (3), 31–41 (1982).

    Google Scholar 

  22. M. Saccomani, S. Audoly, and L. Angio, “An Effective Automatic Procedure for Testing Parameter Identifiability of HIV/AIDS Models,” Bull. Math. Biol. 73, 1734–1753 (1978).

    Article  MathSciNet  Google Scholar 

  23. G. Bellu, M. Saccomani, S. Audoly, and L. D’Angio, “Daisy: A New Software Tool to Test Global Identifiability of Biological and Physiological System,” Comp. Meth. Prog. Biomed. Math. Biosci. 88 (1), 52–61 (2007).

    Article  Google Scholar 

  24. N. Meshkat, C. E. Kuo, and J. J. DiStefano, “Finding and Using Identifiable Parameter Combinations in Nonlinear Dynamic Systems Biology Models and COMBOS: A Novel Web Implementation,” Plos One. 9 (10), e110261 (2014).

    Article  Google Scholar 

  25. N. Meshkat, C. Anderson, and J. J. DiStefano, “Alternative to Ritt’s Pseudodivision for Finding the Input-Output Equations of Multi-Output Models,” Math. Biosci. 239 (1), 117–123 (2012).

    Article  MathSciNet  Google Scholar 

  26. A. Raue, J. Karlsson, M. P. Saccomani, M. Jirstrand, and J. Timme, “Comparison of Approaches for Parameter Identifiability Analysis of Biological Systems,” Bioinformatics 30 (10), 1440–1448 (2014).

    Article  Google Scholar 

  27. S. I. Kabanikhin, D. A. Voronov, A. A. Grodz, and O. I. Krivorotko, “Identifiability of Mathematical Models of Medicine Biology,” Vavilov Zh. Genet. i Selek. 19 (6), 738–744 (2015).

    Google Scholar 

  28. A. F. Villaverde and A. Barreiroc, “Identifiability of Large Nonlinear Biochemical Networks,” MATCH Commun. Math. Comput. Chem. 76, 259–296 (2016).

    MathSciNet  Google Scholar 

  29. A. Saltelli, K. Chan, and M. Scott, Sensitivity Analysis. Wiley Series in Probability and Statistics (John Wiley & Sons, New York, 2000).

    Google Scholar 

  30. A. Raue, C. Kreutz, and T. Maiwald, “Structural and Practical Identifiability Analysis of Partially Observed Dynamical Models by Exploiting the Profile Likelihood,” Bioinformatics 25 (15), 1923–1929 (2009).

    Article  Google Scholar 

  31. D. G. Cacuci, Sensitivity and Uncertainty Analysis: Theory, Vol. 1 (Chapman & Hall/CRC, New York, 2003).

  32. K. Zh. Yao, B. M. Shaw, B. Kou, K. B. McAuley, and D. W. Bacon, “Modeling Ethylene/Butene Copolymerization with Multi-Site Catalysts: Parameter Estimability and Experimental Design,” Polymer React. Eng. 11 (3), 563–588 (2003).

    Article  Google Scholar 

  33. V. Latyshenko, O. Krivorotko, S. Kabanikhin, Sh. Zhang, V. Kashtanova, and D. Yermolenko, “Identifiability Analysis of Inverse Problems in Biology,” in Proceedings of 2nd international Conference on Computational Modeling, Simulation, and Applied Mathematics (CMSAM-2017), Beijing, China, October 22–23, 2017 (DEStech, Lancaster, Pennsylvania, 2017), pp. 567–571.

    Google Scholar 

  34. T. Quaiser and M. Mönnigmann, “Systematic Identifiability Testing for Unambiguous Mechanistic Modeling — Application to JAK-STAT, MAP Kinase, and NF-kB Signaling Pathway Models,” BMC Syst. Biol. 3, 50–71 (2009).

    Article  Google Scholar 

  35. M. Rodriguez-Fernandez, J. A. Egea, and J. R. Banga, “Novel Metaheuristic for Parameter Estimation in Nonlinear Dynamic Biological Systems,” BMC Bioinformatics 7, 483–500 (2006).

    Article  Google Scholar 

  36. N. Metropolis and S. Ulam, “The Monte Carlo Method,” J. Amer. Stat. Assoc. 44, 335–341 (1949).

    Article  Google Scholar 

  37. H. T. Banks, S. I. Kabanikhin, O. I. Krivorotko, and D. V. Yermolenko, “ANumerical Algorithm for Constructing an Individual Mathematical Model of HIV Dynamics at Cellular Level,” J. Inverse Ill-Posed Probl. 26 (6), 859–873 (2018).

    Article  MathSciNet  Google Scholar 

  38. S. I. Kabanikhin, O. I. Krivorotko, D. V. Ermolenko, V. N. Kashtanova, and V. A. Latyshenko, “Inverse Problems of Immunology and Epidemiology,” Eurasian J. Math. Comp. Appl. 5 (2), 14–35 (2017).

    Google Scholar 

  39. D. S. Callaway and A. S. Perelson, “HIV-1 Infection and Low Steady State Viral Loads,” Bull. Math. Biol. 64, 29–64 (2001).

    Article  Google Scholar 

  40. H. T. Banks, Sh. Hu, and W. C. Thompson, Modeling and Inverse Problems in the Presence of Uncertainty (Chapman and Hall/CRC, New York, 2014).

    Book  Google Scholar 

Download references

Funding

The authors were supported by the Russian Foundation for Basic Research (project no. 18-31-20019) and the Council on Grants of the President of the Russian Federation (Agreement no. 075-15-2019-1078 (MK-814.2019.1)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. I. Krivorotko, D. V. Andornaya or S. I. Kabanikhin.

Additional information

Russian Text © The Author(s), 2020, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2020, Vol. 23, No. 1, pp. 107–125.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivorotko, O.I., Andornaya, D.V. & Kabanikhin, S.I. Sensitivity Analysis and Practical Identifiability of Some Mathematical Models in Biology. J. Appl. Ind. Math. 14, 115–130 (2020). https://doi.org/10.1134/S1990478920010123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478920010123

Keywords

Navigation