Skip to main content
Log in

Gas Flows in the Sea of Okhotsk Resulting from Cretaceous-Cenozoic Tectonomagmatic Activity

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

A model of the geological evolution of the Sea of Okhotsk is presented based on data from radioisotope age determinations and the mineral and isotope-geochemical composition of Late Mesozoic–Cenozoic volcanic rocks. We discuss the probable interrelationship between gas geochemical manifestations of gas fluxes with anomalous methane concentrations and the formation of gas hydrates, along with the occurrence of volcanic processes in the Sea of Okhotsk, fault zones, and different geological structures of basement and sedimentary deposits, landslides, and earthquakes. As a result of the studies, the nature of each volcanic stage has been determined. These include the Late Cretaceous continental-marginal belt stage (calc-alkaline), the Eocene transform-marginal (adakite) stage, and the Pliocene-Pleistocene island arc stage in the southern part of the Sea of Okhotsk. The sources of magma generation have been recognized, namely, the lithosphere subcontinental, asthenosphere oceanic, and plume-oceanic (OIB). The change in geodynamic regimens was traced back from the Late Cretaceous subduction regimen to the Maastrichtian–Datian transform-marginal, which continued as far as the Pliocene and ended at the resumption of the Pliocene–Pleistocene subduction of the Pacific Plate beneath the Eurasian continent. This involved the processes of destruction of the subduction plate, lithosphere and asthenosphere diapirism, and lower mantle plume upwelling. In the periods of geodynamic, seismotectonic and volcanic activities, gas migrated along the fault zones from the depth to the surface, together with different volcanic substrates ascending through the upper and lower mantle. Gas contained CO2, CH4, H2, He, N2, O2, and superheated steam (Н2О). Gas plays an important dynamic and physicochemical role in the evolution of the Sea of Okhotsk. At the present stage, gas fluxes migrating from the depth to the surface manifest as gas bubbles penetrating from the bottom sediments into the water column, with some portion of gas penetrating into the atmosphere. In the areas with gas fluxes, the fields containing anomalous concentrations of hydrocarbons, gas hydrate, carbon dioxide, hydrogen, and helium result in the formation of gas hydrates and associations of authigenic minerals and various geochemical elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. G. P. Avdeiko, A. A. Palueva, and O. V. Kuvikas, “Adakites in the Circum Pacific subduction zones: review and analysis of geodynamic settings of their formation,” Vestn. KRAUNTs, No. 1, 45–60 (2011).

    Google Scholar 

  2. V. V. Akinin and E. L. Miller, “Evolution of calc-alkaline magmas of the Okhotsk–Chukotka volcanic belt,” Petrology 19 (3), 237–277 (2011).

    Article  Google Scholar 

  3. Atlas: Geology and Mineral Resources of Russia’s Shelves, Ed. by M. N. Alekseeva (Nauch. mir, Moscow, 2004) [in Russian].

  4. O. A. Bogatikov, V. I. Kovalenko, and E. V. Sharkov, Magmatism. Tectonics, and Geodynamics of the Earth: Spatiotemporal Relations (Nauka, Moscow, 2010) [in Russian].

    Google Scholar 

  5. T. A. Emelyanova and E. P. Lelikov, “The role of volcanism in the development of the Japan, Okhotsk, and Philippine marginal seas,” Petrology 18 (6), 624–645 (2010).

    Article  Google Scholar 

  6. T. A. Emelyanova and E. P. Lelikov, “Volcanism as an indicator of a depth mechanism for the formation of the Seas of Japan and Okhotsk,” Russ. J. Pac. Geol. 7 (2), 124–132 (2013).

    Article  Google Scholar 

  7. T. A. Emel’yanova and E. P. Lelikov, “Volcanism and the origin of the Sea of Japan and the Sea of Okhotsk as a response to development of the pacific superplume,” Dokl. Earth Sci. 456 (1), 517–519 (2014).

    Article  Google Scholar 

  8. T. A. Emel’yanova and E. P. Lelikov, “Geochemistry and petrogenesis of the Late Mesozoic—Early Cenozoic volcanic rocks of the Okhotsk and Japan marinal seas,” Geochem. Int. 54 (6), 509–521 (2016).

    Article  Google Scholar 

  9. B. Ya. Karp, “Structure of the crust of the Sea of Japan floor based on seismic data,” Geology and Mineral Resources of Russia’s Shelves, Ed. by M. N. Alekseeva (GEOS, Moscow, 2002) [in Russian].

    Google Scholar 

  10. S. A. Kasatkin and A. I. Obzhirov, “Fluid-controlling significance of the Nosappu fracture zone and conditions for the formation of methane fluxes and gas hydrates (Sea of Okhotsk Region),” Russ. J. Pac. Geol. 12 (1), 57–62 (2018).

    Article  Google Scholar 

  11. V. I. Kovalenko, V. V. Yarmolyuk, and O. A. Bogatikov, “The recent supercontinent in the northern hemisphere of the Earth (North Pangea): magmatic and geodynamic evolution,” Dokl. Earth Sci. 427A (5), 897–901 (2009).

    Article  Google Scholar 

  12. A. V. Koloskov, L. I. Gontovaya, and S. V. Popruzhenko, “The upper mantle of Kamchatka in isotopic–geochemical and geophysical anomalies: the role of asthenospheric diapirism,” Russ. J. Pac. Geol. 8 (3), 151–162 (2014).

    Article  Google Scholar 

  13. M. I. Kuz’min, V. V. Yarmolyuk, and V. A. Krav-chinskii, “Absolute paleogeographic reconstructions of the Siberian Craton in the Phanerozoic: a problem of time estimation of superplumes,” Dokl. Earth Sci. 437 (1), 311–315 (2011).

    Article  Google Scholar 

  14. R. G. Kulinich, M. G. Valitov, S. M. Nikolaev, and T. N. Kolpashchikova, “Moho’s discontinuity topography and types of the Earh’s crust on the northwestern Sea of Japan: gravity data, Russian Far East Sea, Ed. by V. A. Akulichev (Nauka, Moscow, 2007), No. 3, pp. 48–53 [in Russian].

  15. E. P. Lelikov, Metamorphic Complexes of the Pacific Marginal Seas (DVO AN SSSR, Vladivostok, 1992) [in Russian].

    Google Scholar 

  16. E. P. Lelikov and A. N. Malyarenko, Granitoid Magmatism of the Pacific Marginal Seas (Dal’nauka, Vladivostok, 1994) [in Russian].

    Google Scholar 

  17. F. R. Likht, “Transit linear morphostructures in the TPP geomorphological space as exemplified by the Sea of Japan lineament,” Structural Features and Evolution of Geospheres. Proc. 4th International Conf., Khabarovsk, Russia,1998 (DVO RAN, Khabarovsk, 1998), pp. 28–31 [in Russian].

  18. Yu. A. Martynov, A. A. Chashchin, V. P. Simanenko, and A. Yu. Martynov, “Maestrichtian–Danian andesite series of the Eastern Sikhote Alin: mineralogy, geochemistry, and petrogenetic aspects,” Petrology 15 (3), 275–295 (2007).

    Article  Google Scholar 

  19. Yu. A. Martynov, Principles of Magmatic Geochemistry (Dal’nauka, Vladivostok, 2010) [in Russian].

    Google Scholar 

  20. Yu. A. Martynov and A. I. Khanchuk, “Cenozoic volcanism of the eastern Sikhote Alin: petrological studies and outlooks,” Petrology 21 (1), 85—100 (2013).

    Article  Google Scholar 

  21. Methane Monitoring in the Sea of Okhotsk, Ed. by A. I. Obzhirov, A. N. Salyuk, and O. F. Vereshchagina (Dal’nauka, Vladivostok, 2002) [in Russian].

    Google Scholar 

  22. A. I. Obzhirov, B. A. Kazanskii, and Yu. I. Mel’nichenko, “Effect of voice scattering by natural water in the marginal parts of the Sea of Okhotsk,” Tikhookean. Geol., No. 2, 119–121 (1989).

  23. A. I. Obzhirov, Gas-Geochemical Fields of Natural Layer of Sea and Oceans (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  24. A. G. Rodnikov and L. P. Zabarinskaya, V. B. Piip, V. A. Rashidov, N. A. Sergeeva, and N. I. Filatova, “Geotraverse of the Sea of Okhotsk region,” Vestn. KRAUNTs. Ser. Nauki Zemle, No. 5, 45–58 (2005).

    Google Scholar 

  25. V. P. Simanenko, V. V. Golozubov, and V. G. Sakhno, “Geochemistry of volcanic rocks from transform margins: evidence from the Alchan Basin, Northwestern Primorie,” Geochem. Int. 44 (12), 1157–1169 (2006).

    Article  Google Scholar 

  26. I. A. Tararin, “Geological structure and models of formation of the deep-water Kurile basin of the Sea of Okhotsk,” in Pacific Ore Belt: New Data (Dal’nauka, Vladivostok, 2008), pp. 308–321 [in Russian].

  27. Tectonics and Hydrocarbon Potential of the Sea of Okhotsk, Ed. by O. V. Veselov, E. V. Gretskaya, A. Ya. Il’ev (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  28. N. I. Filatova, “Dynamics of the Marginal-Sea Magmatism (Korean—Japan region),” Litosfera, No. 3, 33–56 (2004).

    Google Scholar 

  29. V. Yu. Chevychelov, G. P. Zaraiskii, S. E. Borisovskii, and D. A. Borkov, “Effect of melt composition and temperature on the partitioning of Ta, Nb, Mn, and F between granitic (alkaline) melt and fluorine-bearing aqueous fluid: fractionation of Ta and Nb and conditions of ore formation in rare-metal granites,” Petrology 13 (4), 305–321 (2005).

    Google Scholar 

  30. B. V. Baranov, Y. K. Jin, H. Shoji, et al., “Gas hydrate system of the Sakhalin slope: geophysical approach,” Scientific Report of the Sakhalin Slope Gas Hydrate Project (2007).

  31. K. C. Condie, “Incompatible element ratios in oceanic basalts and komatiites: tracking deep mantle sources and continental growth rates with time,” Geochem., Geophys., Geosyst. 4 (1), 1–18 (2003).

    Article  Google Scholar 

  32. M. J. Defant, and M. S. Drummond, “St. Helens Mount: potential example of the partial melting of the subducted lithosphere in a volcanic arc,” Geology 21, 547–550 (1993).

    Article  Google Scholar 

  33. T. A. Emel’yanova, E. P. Lelikov, and V. T. S’edin, “Geochemical features of the Okhotsk sea Cenozoic Volcanism,” J. Geo-Mar. Lett. 26 (5), 275–286 (2006).

    Article  Google Scholar 

  34. B. S. Kamber and K. D. Collerson, “Role of ‘hidden’ deeply subducted slabs in mantle depletion,” Chem. Geol. 166, 241–254 (2000).

    Article  Google Scholar 

  35. H. Minami, K. Tatsumi, A. Hachikubo, S. Yamashita, H. Sakagami, N. Takahashi, H. Shoji, Y. K. Jin, A. Obzhirov, N. Nikolaeva, and A. Derkachev, “Possible variation in methane flux caused by gas hydrate formation on the northeastern continental slope off Sakhalin Island, Russia,” Geo-Mar. Lett. 32 (5), 525–534 (2012).

    Article  Google Scholar 

  36. C. Munker, G. Worner, G. Yogodzinsky, and T. Churikova, “Behaviour of high field strength elements in subduction zone: constraints from Kamchatka-Aleution Arc lavas,” Earth Planet. Sci. Lett. 224, 275–293 (2004). https://doi.org/10.1016/j.epsl.2004.05.030

    Article  Google Scholar 

  37. A. Obzhirov, R. Shakirov, A. Salyuk, E. Suess, N. Biebow, and A. Salomatin, “Relations between methane venting, geological structure and seismo-tectonics in the Sea of Okhotsk,” GeoMar. Lett. 24 (3), 135–139 (2004). https://doi.org/10.1007/s00367-004-0175-0

    Google Scholar 

  38. L. N. Propp, A. I. Obzhirov, and M. V. Propp, “Gas anomalies and hydrochemical anomalies in bottom water in an area of volcanic activity (Bay of Plenty, New Zealand),” Oceanology 32 (4), 463–468 (1992). https://doi.org/10.1594/PANGAEA.759281

    Google Scholar 

  39. I. W. Shervais, “Ti–V plots and petrogenesis of modern and ohpiolitic lavas,” Earth. Planet. Sci. Lett. 59 (1), 101–118 (1982). https://doi.org/0012-821 X/82/0000-0000/$02.75

    Article  Google Scholar 

  40. R. N. Thompson, “Dispatches from Tertiary volcanic province,” Scot. J. Geol. 18, 49–107 (1982).

    Article  Google Scholar 

Download references

Funding

The study was performed in accordance with the Fundamental Research Program of the Pacific Oceanological Institute of the Far East Branch, Russian Academy of Sciences (POI FEB RAS) theme no. 0271-2019-0006 (no. on the State Registration AAAA-A17-117030110035-4), FWMM-2019-0006 (no. on the State Registration АААА-А19-119122090009-2) and theme no. 0271-2019-0005 (no. on the State Registration АААА-А17-117030110033-0). The study was supported partly by the Russian Foundation for Basic Research (project no. 20-55-50005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Obzhirov.

Additional information

Recommended for publishing by G.L. Kirillova

Translated by N. Kovriga

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obzhirov, A., Emelyanova, T., Telegin, Y. et al. Gas Flows in the Sea of Okhotsk Resulting from Cretaceous-Cenozoic Tectonomagmatic Activity. Russ. J. of Pac. Geol. 14, 156–168 (2020). https://doi.org/10.1134/S1819714020020049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714020020049

Keywords:

Navigation