Skip to main content
Log in

New Data on the Crust and Upper Mantle Structure of the Southeast China Obtained from Statistical Processing Results of Gravity Anomalies

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

Based on statistical processing of gravity anomalies and tectonic interpretation of 3D distributions of density contrast in the crust and upper mantle of Southeast China, new features of rheological layering of the tectonosphere are revealed. Relations of near-surface geological structures with a deep tectonosphere structure in this region are defined. New data on deep relationship of lithospheric segments of a different rank are obtained: splitting, underthrusting, thrusting, and strike-slip fault in the different depth ranges of geological space. Hidden tension zones in the lower crust and subcrustal mantle have been revealed. New assessments independent of the previous were obtained on the lithosphere thickness, subcrustal and asthenosphere layers of lowered viscosity, and their location in geological space. Rheological layering of the crust and upper mantle of Southeast China produces new features of the collision and subduction of the lithosphere segments, which are universal of the West Pacific continental margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yu. I. Blokh, Quantitative Interpretation of Gravity and Magnetic Anomalies. A Textbook (Izd-vo Mosk. geol.- razv. un-ta, Moscow, 1998) [in Russian].

  2. A. N. Didenko, V. B. Kaplun, Yu. F. Malyshev, et al., Deep Structure and Metallogeny of East Asia (Dal’nauka, Vladivostok, 2010) [in Russian].

    Google Scholar 

  3. G. A. Troshkov, “Localization method of singulary sources of geopotential fields in a space of three compositional variables,” Fiz. Zemli, No. 9, 73–77 (1994).

    Google Scholar 

  4. M. An and Y. Shi, “Lithospheric thickness of the Chinese continent,” Phys. Earth Planet. Int 159, 257–266 (2006).

  5. M. An, M. Feng, and Y. Zhao, “Destruction of lthosphere within the North China Craton inferred from surface wave tomography,” Geochem., Geophys., Geosystems 10 (8), 1–18 (2009).

  6. H. Boorder, “The Jiaodong gold district, Northeastern China, in the Context of the Late Paleozoic and Late Mesozoic large igneous provinces, orogeny and metallogeny in Eurasia,” Ore Geol. Rev 65, 574–588 (2015).

  7. E. Burov, L. Guillou-Frottier, “D’Acremont., L. Le Pourhiet, and S. Cloeting, “Plume head–lithosphere interaction near intracontinental plate boundaries,” Tectonophysics 434, 15–38 (2007).

  8. J. Charvet, “The Neoproterozoic–Early Paleozoic tectonic evolution of the South China Block: an overview,” J. Southeast Asian Earth Sci. 74, 198–209 (2013).

  9. B. Chen, B. M. Jahn, S. Wilde, and B. Xu, “Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications,” Tectonophysics P, 157–182 (2000).

  10. L. Chen, T. Wang, L. Zhao, and T. Y. Zheng, “Distinct lateral variations of lithospheric thickness in the northeastern North China Craton,” Earth Planet. Sci. Lett. 267, 56–68 (2008).

  11. Y. Chen and J. Xie, “Resolution, uncertainty and data predictability of tomographic lg attenuation models - application to southeastern China,” Geophys. J. Int. 210, 166–183 (2017).

  12. CO2 Storage Prospectivity of Selected Sedimentary Basins in the Region of China and South Asia (Innovative Caron and Technologies PtyLtd., 2015). www.ictpl.com au.

  13. J. J. Cui, Y. Q. Zhang, S. W. Dong, Y. Li, et al., “Late Mesozoic orogenesis along the coast of Southeast China and its geological significance,” Geology in China 40 (1), 86–105 (2013).

  14. H. Dong, Ye. G. Wei, S. Jin, A. G. Jones, J. Jing, L. Zhang, C. Xie, F. Zhang, and H. Wang, “Three-dimensional electrical structure of the crust and upper mantle in Ordos Block and adjacent area: evidence of regional lithospheric modification,” Geochem., Geophys., Geosyst., 2414–2425 (2014).

  15. G. C. Evans, “Application of Poincare’s sweeping-out process,” Mathematics 19, 457–461 (1933).

  16. M. Faure, P. Trap, W. Lin, P. Monie, and O. Bruguier, “Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt, new insights from the Luliangshan–Hengshan–Wutaishan and Fuping Massifs,” Episodes J. Int. Geosci., Seoul National University 30 (2), 95–106 (2007).

  17. M. Faure, Y. Chen, Z. Feng, L. Shu, and Z. Xu, “Tectonics and geodynamics of South China: an introductory note,” J. Asian Earth Sci. 141, 1–6 (2017). http://dx.doi.org/. 2016.11.031https://doi.org/10.1016/j.jseaes

  18. D. Fu, B. Huang, M. Timothy, T. M. Kusky, G. Li, A. S. Wilde, W. X. Zhou, and Y. A. Yu, “Middle Permian ophiolitic melange belt in the Solonker Suture Zone, Western Inner Mongolia, China: implications for the evolution of the Paleo-Asian Ocean,” Tectonics 37 (5), 1292–1320 (2018).

  19. V. Ya. Podgornyi, “Gravitational model of the Taiwan lithosphere (along the profile Taiwan Strait-Taiwan Island–West Philippine Basin),” Russ. J. Pac. Geol 1 (3), 230–239 (2007).

  20. I. V. Gordienko, “Paleozoic geodynamic evolution of the Mongol–Okhotsk Fold Belt,” J. Southeast Asian Earth Sci. 9 (4), 429–433 (1994).

  21. B. R. Hacker, L. Ratschbacher, L. Webb, T. Ireland, D. Walker, and D. Shuwen, “U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling–Dabie Orogen, China,” Earth Planet. Sci. Lett. 161, 215–230 (1998).

  22. B. Hacker, L. Ratschbacher, and J. Liou, Subduction, collision and exhumation in the ultrahigh-pressure Qinling–Dabie Orogen, Geol. Soc. London Spec. Publ., No. 1, 151—175 (2004).https://doi.org/10.1144/GSL.SP.2004.226.01.09

  23. T. Hao, Y. Liu, and C. Duan, “Characteristics of geophysical field in East China and adjacent regions,” Geosci. J. 2 (3), 108–116 (1998).

  24. C. He and S. Dong, M. Santosh, and X. Chen, “Seismic evidence for a geosuture between the Yangtze and Cathaysia blocks, South China,” Scientific Reports SREP-12-04023 (2013).

  25. W. Huang and Z. W. Wu, “Evolution of the Qinling Orogenic Belt,” Tectonics 11 (2), 371–380 (1992).

  26. J. Huang and D. Zhao, “High-resolution mantle tomography of China and surrounding regions,” J. Geophys. Res. 111, B09305 (2006).

  27. A. I. Khanchuk and A. M. Petrishchevsky, “Asthenosphere and plates of Notheast Asia,” Dokl. Earth Sci. 413 (2), 220–224.

  28. A. I. Khanchuk, A. N. Didenko, L. I. Popeko, A. A. Sorokin, and B. F. Shevchenko, “Structure and evolution of the Mongol-Olhotsk orogenic belt,” The Central Asian Orogenic Belt. Geology, Evolution, Tectonics and Models, Ed. by A. Krener, (Borntraeger Sci. Publ, Stuttgart, 2015), pp. 211–234.

    Google Scholar 

  29. K. H. Kim, J. M. Chiu, J. Pujol, K. C. Chen, B. S. Huang, Y. H. Yeh, P. Shen, “Three-dimensional Vp and Vs structural models associated with the active subduction and collision tectonics in the Taiwan Region,” Geophys. J. Int. 162, 204–220 (2005).

  30. H. Kuo-Chen, F. T. Wu, and S. W. Roecker, “Three-dimensional p velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets,” J. Geophys. Res.: Solid Earth 117 (B6) (2012).

  31. T. M. Kusky, B. F. Windley, M. G. Zhai, and Q. R. Meng, Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia; Constraints, Evolution, and Tests of Models, Geol. Soc. London. Spec. Publ., 280, (2007).

  32. T. M. Kusky, A. Polat, B. F. Windley, K. C. Burke, J. F. Dewey, W. S. F. Kidd, S. Maruyama, J. P. Wang, H. Deng, Z. S. Wang, C. Wang, D. Fu, X. W. Lib, and H. T. Peng, “Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: a record of outward growth of precambrian continents,” Earth Sci. Rev. 162 P, 387–432 (2016).

  33. M. Kuzmin and S. Antipin, “Geochemical types of granitoids of the Mongol-Okhotsk Belt and their geodynamic settings,” Chinese J. Geochem. 12 (2), 110–117 (1993).

  34. J. Li, H. Zhou, F. M. Brouwer, W. Xiao, J. R. Wijbrans, J. Zhao, Z. Zhong, and H. Liu, “Nature and timing of the Solonker suture of the Central Asian Orogenic Belt: insights from geochronology and geochemistry of basic intrusions in the Xilin Gol Complex, Inner Mongolia, China,” Intern. J. Earth Sci. 103 (1), 41–60 (2014).

  35. T. Li, “The principal characteristics of the lithosphere of China,” Geosci. Frontiers 1, 45–56 (2010).

  36. T. D. Li, W. S. Dai, and G. M. Wei, “Geology of Asia,” Altas of the Geology of China, Ed. by L. F. Ma, (Geol. Publ., 2001), pp. 5–7.

    Google Scholar 

  37. X. Li, P. Zhu, M. T. Kusky, Y. Gu, S. Peng, Y. Yuan, J. Fu, “Has the Yangtze Craton lost its root? A comparison between the North China and Yangtze Cratons,” Central Asian Tectonics and Western Pacific Geodynamics International Workshop, (2015), pp. 5–9.

  38. W. Lin, Q. Wang, and K. Chen, “Phanerozoic tectonics of South China block: new insights from the polyphase deformation in the Yunkai Massif,” Tectonics 27, TC6004 (2008).

  39. X. C. Liu, S. Z. Li, and J. Bor-Ming, “Tectonic Evolution of the Tongbai–Hong’An Orogen in Central China: from oceanic subduction/accretion to continent-continent collision,” Sci. China. Earth Sci 58 (9), 1477–1496 (2015).

  40. Y. F. Malyshev, V. Y. Podgornyi, B. F. Shevchenko, N. P. Romanovskii, V. B. Kaplun, and P. Y. Gornov, “Deep structure of the Amur lithospheric plate border zone,” Russian J. Pac. Geol. 1 (2), 107–119 (2007).

  41. Y. A. Martynov and A. I. Khanchuk, “Cenozoic volcanism of the Eastern Sikhote Alin: petrological studies and outlooks,” Petrology 21 (1), 85–99 (2013).

  42. C. Peng and R. Gao, “Lateral change in the lithospheric asthenospheric structures in continental China and its adjacent sea area,” Seismol. Press, 1–21 (2000).

  43. A. M. Petrishchevsky, “A viscous layer at the crust–mantle boundary in the Far East of Russia,” Geotectonics 42 (5), 357–367 (2008).

  44. A. M. Petrishchevsky and Yu. P. Yushmanov, “Rheology and metallogeny of the Maya-Selemdzha Plume,” Dokl. Earth Sci. 440 (2), 207–212 (2011).

  45. A. M. Petrishchevsky, “Gravity models of two-level collision of lithospheric plates in Northeast Asia,” Geotectonics 47 (6), 424–443 (2013).

  46. A. M. Petrishchevsky and Yu. P. Yushmanov, “Geophysical, magmatic, and metallogenic manifestation of a mantle plume in the upper reaches of the Aldan and Amur rivers,” Russ. Geol. Geophys. 55, 443–462 (2014).

  47. A. M. Petrishchevsky, “Common features of the tectonosphere deep structure in the western Pacific Margins (Northeast Asia region and Australia),” Geotectonics 50 (6), 608–623 (2016).

  48. Precambrian Geology of China, Ed. by M. Zhai (Springer-Verlag, Berlin Heidelberg, 2015).

    Google Scholar 

  49. L. Ratschbacher, B. R. Hacker, A. Calvert, L. E. Webb, J. C. Grimmer, M. O. McWilliams, T. Ireland, T. S. Dong, and J. Hu, “Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history,” Tectonophysics 366, 1–53 (2003).

  50. J. Ren, S. Li. Tamaki, and J. Zhan, “Late Mesozoic and Cretaceous rifting and its dynamic setting in Eastern China and adjacent areas,” Tectonophysics 344, 175–205 (2002).

  51. G. Shellnutt, “The Emeishan large igneous province: a synthesis,” Geosci. Front. 5, 369–394 (2004).

  52. L. S. Shu, M. Faure, J. H. Yu, and B. M. Jahn, “Geochronological and geochemical features of the Cathaysia Block (South China): new evidence for the Neoproterozoic breakup of Rodinia,” Precambrian Res. 187 (3–4), 263–276 (2011).

  53. R. J. Stern, S. M. Li, and G. R. Keller, “Continental crust of China: a brief guide for the perplexed,” Earth-Sci. Rev 179, 72–94 (2018).

  54. W. Sun and B. L. N. Kennett, “Uppermost mantle structure beneath Eastern China and its surroundings from Pn and Sn tomography,” Geophys. Res. Lett. 43, 3143–3149 (2016).

  55. W. Sun and B. L. N. Kennett, “Mid-lithosphere discontinuities beneath the western and central North China Craton,” Geophys. Res. Lett., 1302–1310 (2017).

  56. Y. Sun, M. Liu, S. Dong, H. Zhang, and Y. Shi, “Active tectonics in Taiwan: insights from a 3-D viscous finite element model,” Earthquake Sci. 28 (2015).

  57. Y. Tang, Y. J. Chen, S. Zhou, J. Ning, and Z. Ding, “Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography,” J. Geophys. Res.: Solid Earth 118, 2333–2346 (2013).

  58. W. Tao and Z. Shen, “Heat flow distribution in Chinese Continent and its adjacent areas,” Natural Sci 18, 843–849 (2008).

  59. H. J. A. Van Avendonk, K. D. McIntosh, H. Kuo-Chen, L. L. Lavier, D. A. Okaya, F. T. Wu, C. Y. Wang, C. S. Lee, C. S. Liu, “Lithospheric profile across northern Taiwan: from arc-continent collision to extension,” Geophys. J. Intern. 204 (1), 331–346 (2015).

  60. T. Wan, Q. Zhao, H. Lu, Q. Wang, C. Sun, http://www.sciencepublishinggroup.com/j/earth)

  61. D. Wang and L. Shu, “Late Mesozoic basin and range tectonics and related magmatism in Southeast China,” Geosci. Fronti 3 (2), 109–124 (2012).

  62. Y. Wang, F. Zhang, W. Fan, G. Zhang, S. Chen, P. A. Cawood, A. Zhang, “Tectonic setting of the South China Block in the Early Paleozoic: resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology,” Tectonics 29, 1–16 (2010).

  63. Z. J. Wang, W. L. Xu, F. P. Pei, Z. W. Wang, Y. Li, H. H. Cao, “Geochronology and geochemistry of Middle Permian–Middle Triassic intrusive rocks from Central-Eastern Jilin Province, NE China: constraints on the tectonic evolution of the eastern segment of the Paleo-Asian Ocean,” Lithos 238, 13–25 (2015).

  64. Z. Wang, H. Zhou, X. Wang, and X. Jing, “Characteristics of the crystalline basement beneath the Ordos Basin: constraint from aeromagnetic data,” Geosci. Fronti 6, 465–475 (2015).

  65. G. Ye, C. Jin, M. Deng, J. Jing, Z. Peng, X. Li, S. Song, B. Tang, S. Qu, K. Chen, H. Yang, and G. Li, “Geoelectric structure of lithosphere beneath eastern North China: features of thinned lithosphere from magnetotelluric soundings,” Earth Sci. Front. 15 (4), 204–216 (2008).

  66. Y. B. Wu and Y. F. Zheng, “Tectonic evolution of a composite collision orogen: an overview on the Qinling–Tongbai–Hong’An–Dabie–Sulu Orogenic Belt in Central China,” Gondwana Res. 23, 1402–1428 (2013).

  67. Y. Xia, X. Xu, Y. Niu, and L. Liu, “Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: the magmatism in various tectonic settings and continent–arc–continent collision,” Precambrian Res. 309, 56–87 (2018).

  68. B. F. Windley, J. Hao, and J. L. Li, “Arc–ophiolite obduction in the western Kunlun Range (China): implications for the Palaeozoic evolution of Central Asia,” J. Geol. Soc. London, 517–528 (2002).

  69. B. F. Windley, Y. Yong, Z. Yan, C. Yuan, C. Liu, and J. Li, “Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China,” J. Asian Earth Sci. 35, 323–333 (2009).

  70. J. Yao, L. Shu, M. Santosh, and J. Li, “Precambrian crustal evolution of the South China. Block and its relation to supercontinent history: constraints from U-Pb ages, Lu-Hf isotopes and REE geochemistry of zircons from sandstones and granodiorite,” Precambrian Res. 208, 19–48 (2012).

  71. J. L. Yao, P. A. Cawood, L. S. Shu, M. Santosh, and J. Y. Li, “An Early Neoproterozoic accretionary prism ophiolitic melange from the Western Jiangnan Orogenic Belt, South China,” J. Geol. 124, 587–601 (2016).

  72. M. Zhai and Ya. Zhou, “General Precambrian geology in China,” Precambrian Geology of China (Springer-Verlag, Berlin–Heidelberg, 2015), pp. 3—58.

  73. C. Zhang, F. M. Mushayandebvu, A. B. Reid, J. D. Fairhead, and M. E. Odegard, “Euler deconvolution of gravity tensor data,” Geophysics 65 (2), 512–520 (2000).

  74. L. Zhang, “A review of recent developments in the study of regional lithospheric electrical structure of the Asian Continent,” Surv. Geophys. 38, 1043–1096 (2017).

  75. X. Zhang, B. Yang, F. Wu, and G. Liu, “The lithosphere structure of Northeast China,” Front. Earth Sci. China 1 (2), 165–171 (2007).

  76. S. X. Zhang, R. Q. Wei, and Y. G. Liu, “Three-dimensional rheological structure of the lithosphere in the Ordos Block and its adjacent area,” Geophys. J. Int. 163, 339–356 (2005).

  77. G. Y. Zhao, L. Zhan, J. Wang, J. Wang, X. Tang, and Xiao Q. Chen, “Electrical structure of the crust beneath the Ordos Block,” Earthquake Res. China 25 (2), 121–134 (2011).

  78. G. Zhao, “Jiangnan Orogen in South China: developing from divergent double subduction,” Gondwana Res. 27, 1173–1180 (2015).

  79. Y. Zhao, J. P. Zheng, Q. Xiong, and H. Zhang, “Destruction of the North China Craton triggered by the Triassic Yangtze continental subduction/collision: a review,” J. Asian Earth Sci. 164, 72–82 (2018).

  80. Y. F. Zheng, W. J. Xiao, and G. Zhao, “Introduction to tectonics of China,” Gondwana Res. 23, 1189–1206 (2013).

  81. J. S. Zhu, J. M. Cao, X. L. Cai, Z. Q. Yan, and X. L. Gao, “High resolution surface wave tomography in East Asia and West Pacific marginal seas,” Chinese J. Geophys. 45 (5), 646–664 (2002).

  82. J. S. Zhu, X. L. Cai, J. M. Cao, and Z. Q. Yan, “Lithospheric structure and geodynamics in China and its adjacent areas,” Geology in China 33 (4), 793–803 (2006).

  83. R. X. Zhu, L. Chen, F. Y. Wu, et al., “Timing, scale and mechanism of the destruction of the North China Craton,” Sci. China Earth Sci. 54, 789–797 (2011).

  84. R. X. Zhu, Y. G. Xu, G. Zhu, H. F. Zhang, Q. K. Xia, and T. Y. Zheng, “Destruction of the North China Craton,” Sci. China Earth Sci. 55 (10), 1565–1587 (2012).

Download references

ACKNOWLEDGMENTS

We express our gratitude to A.S. Dolgal, Doctor Phys.-Math. Sci., and Yu.M. Nosyrev, Cand. Geol.-Min. Sci., for careful study and help in editing the manuscript.

Funding

This work was performed within the 2017–2019 State Task NIOKTR AААА-А17-117031310010-6 “Modeling of Deep Structures of the Crust and Upper Mantle of the Far East Region, revealing Fundamental Relationships between Structural, Geodynamic, and Metallogenic Characteristics of Tectonopshere.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Petrishchevsky.

Additional information

Recommended for publishing by V.V. Golozubov

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrishchevsky, A.M. New Data on the Crust and Upper Mantle Structure of the Southeast China Obtained from Statistical Processing Results of Gravity Anomalies. Russ. J. of Pac. Geol. 14, 121–136 (2020). https://doi.org/10.1134/S1819714020020062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714020020062

Keywords:

Navigation