Skip to main content
Log in

Petrography and Geochemistry of Cenozoic Sandstones in the Dunhua Basin, Northeast China: Implications for Provenance, Source Weathering, and Tectonic Setting

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

Petrographic, mineralogical, and geochemical analyses were conducted on Cenozoic sandstones from the Dunhua Basin, which located in Dunhua-mishan fault zone of northeast China, to investigate the provenance of the sediments, as well as the weathering intensity and tectonic setting of the source region. Petrographic data indicate that average quartz-feldspar-lithic (Q-F-L) proportions in the sandstones are Q = 68%, F = 16%, and L = 16%, the lithic fraction mainly contains volcanic clasts. The chemical index of alteration (CIA) varies from 59 to 69 (average 63), while the index of chemical variability (ICV) ranges from 0.68 to 0.91 (average 0.77), and the average Th/U ratio is 3.2. Chondrite-normalized REE distributions show LREEs enriched relative to HREEs, and a prominent negative Eu anomaly. These data indicating that the sandstones are compositionally immature and a weak degree of weathering in the source region. The petrographic and mineralogical characteristics, combine with Zr/Sc–Th/Sc, Hf–La/Th and Co/Th–La/Sc discrimination diagrams reveal that these sandstones are derived from the surrounding felsic volcanic and intrusive rocks of Late Triassic-Early Jurassic, which exposed to the southeast or northwest of the basin. Multidimensional tectonic discrimination diagrams, including geochemical data and Dickinson triangular charts, indicate that the sandstones were derived from recycled orogenic in an active continental margin setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11

Similar content being viewed by others

REFERENCES

  1. C. J. Allegre and J. F. Minster, “Quantitative models of trace element behavior in magmatic processes,” Earth Planet. Sci. Lett. 38 (1), 1–25 (1978).

    Article  Google Scholar 

  2. J. S. Armstrong-Altrin, R. Nagarajan, Y. I. Lee, et al., “Geochemistry of sands along the San Nicolas and San Carlos beaches, Gulf of California, Mexico: implications for provenance and tectonic setting,” Turk. J. Earth Sci 23, 533–55 (2014).

    Article  Google Scholar 

  3. J. S. Armstrong-Altrin, M. L. Machain-Castillo, L. Rosales-Hoz, et al., “Provenance and depositional history of continental slope sediments in the southwestern Gulf of Mexico unraveled by geochemistry analysis,” Cont. Shelf Res 95, 15–26 (2015).

    Article  Google Scholar 

  4. D. K. Asedu, S. Suzuki, K. Nogami, et al., “Geochemistry of Lower Cretaceous sediments, inner zone of Southwest Japan: constraints on provenance and tectonic environment,” Geochem. J. 34, 155–173 (2000).

    Article  Google Scholar 

  5. Y. Bai, Z. Liu, P. Sun, et al., “Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China,” J. Asian Earth Sci 97, 89–101 (2015).

    Article  Google Scholar 

  6. M. R. Bhatia, “Plate tectonics and geochemical composition of sandstone,” J. Geol. 91 (6), 611–627 (1983).

    Article  Google Scholar 

  7. M. R. Bhatia, “Rare earth element geochemistry of Australian Paleozoic greywackes and mudstones: provenance and tectonic control,” Sediment. Geol. 45, 97–113 (1985).

    Article  Google Scholar 

  8. M. R. Bhatia and K. A. W. Crook, “Trace element characteristics of greywacke sand tectonic setting discrimination of sedimentary basins,” Contrib. Mineral. Petrol. 92, 181–193 (1986).

    Article  Google Scholar 

  9. S. E. Calvert, R. M. Bustin, and E. D. Ingall, “Influence of water column anoxia and sediment supply on the burial and preservation of organic carbon in marine shales,” Geochim. Cosmochim. Acta 60, 1577–1593 (1996).

    Article  Google Scholar 

  10. K. S. Camuti and P. T. McGuire, “Preparation of polished thin sections from poorly consolidated regolith and sediment materials,” Sediment. Geol. 28, 171–178 (1999).

    Article  Google Scholar 

  11. K. Charles, A. H. M. Makenya, and M. Shukrani, “Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: implications for provenance and source rock weathering,” Precambrian Res. 164, 201–213 (2008).

    Article  Google Scholar 

  12. K. C. Condie, D. N. Phillip, and C. M. Conway, “Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from Tonto Basin Super Group, Central Arizona,” Sediment. Geol. 77, 51–76 (1992).

    Article  Google Scholar 

  13. R. Cox, D. R. Lowe, and R. L. Cullers, “The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the Southwestern United States,” Geochim. Cosmochim. Acta 59, 2919–2940.

    Article  Google Scholar 

  14. R. L. Cullers, T. R. Barrett, C. R. Carlson, et al., “Rare earth element and mineralogical changes in Holocene soil and stream sediment: a case study in the Wet Mountains, Colorado, USA,” Chem. Geol. 63, 275–297 (1987).

    Article  Google Scholar 

  15. R. L. Cullers and V. N. Podkovyrov, “Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia. Russia: implications for mineralogical and provenance control, and recycling,” Precambrian Res. 104, 77–93 (2000).

    Article  Google Scholar 

  16. W. R. Dickinson, “Interpreting detrital modes of graywacke and arkose,” J. Sediment. Petrol. 40, 695–707 (1970).

    Google Scholar 

  17. W. R. Dickinson and C. A. Suczek, “Plate tectonics and sandstone compositions,” AAPG 63, 189–194 (1979).

    Google Scholar 

  18. W. R. Dickinson, L. S. Beard, G. R. Brakenridge, et al., “Provenance of North American Phanerozoic Sandstones in relation to tectonic setting,” Geology 94 (2), 222–235 (1983).

    Google Scholar 

  19. W. R. Dickinson, “Interpreting provenance relations from detrital modes of sandstones,” Provenance of Arenites (D. Reidel Publ. Co, Dordrecht, 1985), pp. 333–361.

    Google Scholar 

  20. C. M. Fedo and H. W. Nesbtit, “Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosoils with implications for paleoweathering conditions and provenance,” Geol. 23, 921–924 (1995).

    Article  Google Scholar 

  21. P. A. Floyd and B. E. Leveridge, “Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: framework mode and geochemical evidence from turbiditic sandstone,” J. Geol. Soc. London 144 (4), 531–542 (1987).

    Article  Google Scholar 

  22. A. D. Hanson, B. D. Ritts, D. Zinniker, et al., “Upper Oligocene lacustrine source rocks and petroleum systems of the Northern Qaidam Basin, Northwest China,” AAPG Bull. 85, 601–620 (2001).

    Google Scholar 

  23. H. M. Holail and A. K. M. Moghazi, “Provenance, tectonic setting and geochemistry of greywackes and siltstones of the Late Precambrian Hammamat Group, Egypt,” Sediment. Geol. 116, 227–250 (1998).

    Article  Google Scholar 

  24. H. M. Z. Hossain, B. P. Roser, and J. I. Kimura, “Petrography and whole-rock geochemistry of the Tertiary Sylhet Succession, Northeastern Bengal Basin, Bangladesh: provenance and source area weathering,” Sediment. Geol. 228, 171–183 (2010).

    Article  Google Scholar 

  25. F. Hu, Cenozoic Tectonic and Sedimentary Evolution in Dunhua Basin and its Formation Mechanism (Jilin Univ, Changchun, 2013).

    Google Scholar 

  26. W. Hu, T. Zhang, H. Wang, et al., “A study on basin-forming mechanism and basin properties of Dunhua Basin,” Petrol. Geol. Eng. 22 (1), 25–33 (2008).

    Google Scholar 

  27. J. Huang, J. Ren, C. Jiang, et al., “An outline of the tectonic characteristics of China,” Acta Geol. Sin. 51 (2), 117–135 (1977).

    Google Scholar 

  28. R. V. Ingersoll, T. F. Fullard, R. L. Ford, et al., “The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method,” J. Sediment. Petrol. 54, 103–116 (1984).

    Google Scholar 

  29. J. Jia, A. Bechtel, Z. Liu, et al., “Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): implications from organic and inorganic geochemical analyses,” Int. J. Coal Geol. 113, 11–26 (2013).

    Article  Google Scholar 

  30. M. J. Johnsson, “The system controlling the composition of clastic sediments,” GSA Spec. Publ. 284, 1–19 (1993).

    Google Scholar 

  31. A. Lambeck, D. Huston, D. Maidment, et al., “Sedimentary geochemistry, geochronology and sequence stratigraphy as tools to typecast stratigraphic unit sand constrain basin evolution in the gold-mineralized Palaeoproterozoic Tanami Region, Northern Australia,” Precambrian Res. 166, 185–203 (2008).

    Article  Google Scholar 

  32. Z. Li and C. Zhao, “Late Triassic magmatic activities in relation to plate tectonics of the eastern part of Jilin and Heilongjiang provinces, northeast China,” Bull. Chinese Acad. Geol. Sci 18, 21–32 (1988).

    Google Scholar 

  33. R. Liu, Z. Liu, P. Sun, et al., “Geochemistry of the Eocene Jijuntun Formation oil shale in the Fushun Basin, Northeast China: implications for source-area weathering, provenance and tectonic setting,” Chem. Der. Erde 75, 105–116 (2015).

    Article  Google Scholar 

  34. J. Madhavaraju and Y. Lee, “Influence of Deccan volcanism in the sedimentary rocks of Late Maastrichtian–Danian age of Cauvery Basin, southeastern India: constraints from geochemistry,” Cur. Sci. India 98, 528–537 (2010).

    Google Scholar 

  35. T. McCann, “Sandstone composition and provenance of the Rotliegend of the NE German Basin,” Sediment. Geol. 116, 177–198 (1998).

    Article  Google Scholar 

  36. S. M. McLennan, “Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes,” Rev. Mineral. Geochem. 21, 169–200 (1989).

    Google Scholar 

  37. S. M. McLennan, S. R. Taylor, M. T. McCulloch, et al., “Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations,” Geochim. Cosmochm. Acta 43, 375–388 (1990).

    Article  Google Scholar 

  38. S. M. McLennan, S. Hemming, D. K. McDaniel, et al., “Geochemical approaches to sedimentation, provenance, and tectonics,” Geol. Soc. Am. Spec. Pap. 284, 21–40 (1993).

    Google Scholar 

  39. S. M. McLennan, S. R. Hemming, S. R. Taylor, et al., “Early Proterozoic crustal evolution: geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America,” Geochim. Cosmochim. Acta 59, 1153–1177 (1995).

    Article  Google Scholar 

  40. S. M. McLennan, “Relationships between the trace element composition of sedimentary rocks and upper continental crust,” Geochem. Geophys. Geosyst. 2, 10–21 (2001).

    Article  Google Scholar 

  41. J. L. Mercier, M. Hou, P. Vergely, et al., “Structural and stratigraphical constraints on the kinematics history of the southern Tan-Lu Fault Zone during the Mesozoic Anhui Province, China,” Tectonophysics 439 (1), 33–66 (2007).

    Article  Google Scholar 

  42. A. D. Miall, Principles of Sedimentary Basin Analysis (Springer-Verlag, 1990).

    Book  Google Scholar 

  43. F. Migani, F. Borghesi, and E. Dinelli, “Geochemical characterization of surface sediments from the Northern Adriatic wetlands around the Poriver Delta. Part I: Bulk composition and relation to local background,” J. Geochem. Explor. 56, 72–88 (2015).

    Article  Google Scholar 

  44. R. Nagarajan, J. S. Armstrong-Altrin, F. L. Kessler, et al., “Provenance and tectonic setting of Miocene siliciclastic sediments, Sibuti Formation, Northwestern Borneo,” Arab. J. Geo. Sci. 8, 8549–8565 (2015).

    Article  Google Scholar 

  45. H. W. Nesbitt and G. M. Young, “Early Proterozoic climate and plate motion inferred from major element chemistry of lutites,” Nature 299, 715–717 (1982).

    Article  Google Scholar 

  46. A. N. Odoma, N. G. Obaje, J. I. Omada, et al., “Mineralogical, chemical composition and distribution of rare earth elements in clay-rich sediments from southeastern Nigeria,” J. Afr. Earth Sci. 102, 50–60 (2015).

    Article  Google Scholar 

  47. F. Pei, W. Xu, E. Meng, et al., “The start of Paleo-Pacific subduction: the evidence of the chronology and chemistry from early-middle Jurassic of the eastern part of Jilin and Heilongjiang provinces, northeast China,” Bull. Miner. Petrol. Geochem. 27 (Z1), 268 (2008).

    Google Scholar 

  48. M. JJ. Rahman, A. S. M. Sayem, and T. McCann, “Geochemistry and provenance of the Miocene sandstones of the Surma Group from the Sitapahar Anticline, southeastern Bengal Basin, Bangladesh,” J. Geol. Soc. India 83, 447–456 (2014).

    Article  Google Scholar 

  49. J. Ren, “The Indosinian orogeny and its significance in the tectonic evolution of China,” Bull. Chinese Acad. Geol. Sci. 9, 31–44 (1984).

    Google Scholar 

  50. M. Roddaz, J. Viers, S. Brusset, et al., “Controls on weathering and provenance in the Amazonian foreland basin: insights from major and trace element geochemistry of Neogene Amazonian sediments,” Chem. Geol. 226, 31–65 (2006).

    Article  Google Scholar 

  51. B. P. Roser and R. J. Korsch, “Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio,” J. Geol. 94, 635–650 (1986).

    Article  Google Scholar 

  52. B. P. Roser and R. J. Korsch, “Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data,” Chem. Geol. 67 (1), 119–139 (1988).

    Article  Google Scholar 

  53. D. J. K. Ross and R. M. Bustin, “Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: examples from the Devonian–Mississippian Shales, Western Canadian sedimentary basin,” Chem. Geol. 260, 1–19 (2009).

    Article  Google Scholar 

  54. D. W. Schindler, R. E. Hecky, D. L. Findlay, et al., “Eutrophication of lake cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment,” P. Natl. Acad. Sci 105, 11254–11258 (2008).

    Article  Google Scholar 

  55. Y. Song, Z. Liu, Q. Meng, et al., “Petrography and geochemistry characteristics of the Lower Cretaceous Muling Formation from the Laoheishan Basin, Northeast China: implications for provenance and tectonic setting,” Mineral. Petrol. 16, 476–484 (2016).

    Google Scholar 

  56. X. Sun, S. Wang, Y. Wang, et al., “The structural feature and evolutionary series in the northern segment of the Tancheng-Lujiang fault zone,” Acta Petrol. Sin. 26 (1), 165–176 (2010).

    Google Scholar 

  57. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks (Sci. Press, Beijing, 1985).

    Google Scholar 

  58. M. E. Tucker, Sedimentary Petrology: an Introduction to the Origin of Sedimentary Rocks (John Wiley & Sons, Malden, 2009).

    Google Scholar 

  59. S. P. Verma and J. S. Armstrong-Altrin, “Geochemical Discrimination of siliciclastic sediments from active and passive margin settings,” Sediment. Geol. 332, 1–12 (2016).

    Article  Google Scholar 

  60. H. Wang, T. Zhang, C. Dai, et al., “Stratigraphic division and correlation of the Upper Jurassic–Pliocene in the Dunhua Basin,” Geol. China 35 (1), 40–53 (2008).

    Google Scholar 

  61. S. Wang, X. Sun, J. Du, et al., “Analysis of structural styles in the northern segment of the Tancheng–Lujiang Fault Zone,” Geol. Rev. 58 (3), 414–425 (2012).

    Google Scholar 

  62. Y. Wang and L. Dou, “Formation time and dynamic characteristics of the northern part of the Tan-Lu Fault Zone in East China,” Seism. Geol. 19 (2 P), 186–194 (1997).

  63. T. Wan and H. Zhu, “The maximum sinistral strike-slip and its forming age of the Tancheng–Lujiang Fault Zone,” Geol. J. Univ. 2 (1), 14–27 (1996).

    Google Scholar 

  64. D. J. Wronkiewicz and K. C. Condie, “Geochemistry of Archean shales from the Wit-Watersrand Supergroup, South Africa: source-area weathering and provenance,” Geochim. Cosmochim. Acta 51, 2401–2416 (1987).

    Article  Google Scholar 

  65. J. Wu, J. Luo, G. Yuan, et al., “Petroleum geologic conditions and exploration prospects of the Dunhua Basin,” J. Oil Gas Technol. 29 (5), 8–12 (2007).

    Google Scholar 

  66. W. Xu, F. Pei, F. Wang, et al., “Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes,” J. Asian Earth Sci 74, 167–193 (2013).

    Article  Google Scholar 

  67. M. Yu, P. Wang, R. Wang, et al., “Source rock characteristics and oil-gas resource potential in the Dunhua Basin,” Geol. Sci. Technol. Inf. 27 (5), 65–70 (2008).

    Google Scholar 

  68. S. M. Zaid, “Provenance, diagenesis, tectonic setting and reservoir quality of sandstones of the Kareem Formation, Gulf of Suez, Egypt,” J. Afr. Earth Sci. 85, 31–52 (2013).

    Article  Google Scholar 

  69. N. Zhang, C. M. Lin, and X. Zhang, “Petrographic and geochemical characteristics of the Paleogene sedimentary rocks from the North Jiangsu Basin, Eastern China: implication for provenance and tectonic setting,” Mineral Petrol. 108, 571–588 (2014).

    Article  Google Scholar 

  70. Q. Zhang, L. Wang, G. Xie, et al., “Discussion on northward extension of the Tan-Lu Fault Zone and its tectonic regime transformation,” Geol. J. China Univ. 11 (40), 577–584 (2005).

    Google Scholar 

  71. Y. Zhang, Y. Sun, and X. Zhang, Geoscience Transect from Manzhouli-Suifenhe in China (Geol. Press, Beijing, 1998).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We would also like to thank Dr. Jianpeng Wang of the University of Manchester for his help with the language in the paper.

Funding

The authors would like to thank the Opening Foundation of the Key Laboratory for Oil Shale and Paragenetic Energy Minerals, Jilin Province for their support. This study was supported financially by the China Geological Survey (Project no. 1211302108025-5-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, F., Liu, Z., Meng, Q. et al. Petrography and Geochemistry of Cenozoic Sandstones in the Dunhua Basin, Northeast China: Implications for Provenance, Source Weathering, and Tectonic Setting. Russ. J. of Pac. Geol. 14, 48–65 (2020). https://doi.org/10.1134/S1819714020010078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714020010078

Keywords:

Navigation