Skip to main content
Log in

Tectonic Implications: Zircon age of Sedimentary Rocks from Khabarovsk, Samarka, and Zhuravlevka-Amur Terranes in the Northern Sikhote-Alin Orogenic Belt

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

Geochronological dating was performed on the detrital zircons of 20 sedimentary rock samples from the Khabarovsk, Samarka, and Zhuravlevka–Amur terranes in the northern Sikhote-Alin Orogenic Belt to establish that (1) the isotopic 206Pb/238U ages of the youngest detrital zircon populations of two sedimentary rock samples from the Gorin (K1b) and Pioner (K1b-v) formations, as well as one sample from the Svetlorechensk massif (J3t), were significantly younger than the upper limit of the accepted stratigraphic age of these rocks and (2) sedimentary rocks accumulating in the accretionary prisms matrix of the Khabarovsk–Voronezh tectonostratigraphic zone in the Khabarovsk Terrane and turbidites in the Gorin tectonostratigraphic zone pull-apart basin of the Zhuravlevka–Amur Terrane were derived from sources located within the eastern part of the Central Asian Belt. The source of sedimentary rocks accumulating in the turbidite matrix of the accretionary prisms in the Anyui tectonostratigraphic zone of the Samarka Terrane and turbidites in the pull-apart basin of the Koppi–Luzhki tectonostratigraphic zone of the Zhuravlevka–Amur Terrane was found in the North China Craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Applying this term, we are guided by the following considerations: (1) according to the basics of terrane analysis, terrane can be divided into subterranes and/or tectonostratigraphic complexes/units [for example, 3]; (2) in Russia, adjacent blocks differing sharply in composition and origin are still recognized as structural–formational/structure–facies zones, especially during geological survey [for example, 5, 6, 7, 12, etc.]; and (3) in foreign literature the term “tectonostratigraphic zone” is in general use. We believe that the use of the term “tectonostratigraphic zone” is appropriate.

  2. Steno’s law [35 et al.] is not applicable to stratigraphic dismembering of sections of accretionary prisms as, in their structure, there are “deposits of deep-sea plains, trough, continental slope, and shelf, and these deposits are getting younger in a regular manner as you move from the upper structural levels to the lower levels” [3].

  3. See measurement data for all 20 samples and the corresponding plots in the Supplement to the electronic version of the paper: http://itig.as.khb.ru/POG.

REFERENCES

  1. V. I. Anoikin, G. L. Kirillova, and L. P. Eichwald, “New concepts on the composition, structure, and age of the Lower Amur fragment of the Late Jurassic–Early Cretaceous accretionary prism, Russian Far East,” Russ. J. Pac. Geol. 1 (6), 60–77 (2007).

    Article  Google Scholar 

  2. M. V. Arkhipov, I. P. Voinova, A. V. Kudymov, A. Yu. Peskov, S. Otoh, M. Nagata, V. V. Golozubov, and A. N. Didenko, “Comparative analysis of Aptian–Albian Rocks of the Kema and Kiselevka–Manoma Terranes: geochemistry, geochronology, and paleomagnetism,” Russ. J. Pac. Geol. 13 (3), 239–264 (2019).

    Article  Google Scholar 

  3. Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  4. V. V. Golozubov, Tectonics of the Jurassic and Lower Cretaceous Complexes of the Northwestern Pacific Margin (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  5. State Geological Map of the Russian Federation. 1 : 200 000, 2nd Ed. Nikolaevskaya Series. Sheet M-53-XXXVI: Explanatory Note, Ed. by V. Yu. Zabrodin (MF VSEGEI, Moscow, 2013) [in Russian].

  6. State Geological Map of the Russian Federation. 1 : 1 000 000. Sheet M-53 (3rd Generation). Dal’nevostochnaya Series. Khabarovsk: Explanatory Note, (VSEGEI, St. Petersburg, 2009) [in Russian].

  7. State Geological Map of the Russian Federation. 1 : 1 000 000. Sheet M-54 (3rd Generation). Dal’nevostochnaya Series, (Kartfabrika VSEGEI, St. Petersburg, 2013) [in Russian].

  8. A. Didenko, S. Otoh, V. Golozubov, M. Arkhipov, A. Kudymov, A. Peskov, M. Nagata, and K. Yamamoto, “Detrital zircons from the Albian sandstone of the Silasa and Kema formations (Sikhote–Alin Orogen): U–Pb age and geodynamic implications,” Dokl. Earth Sci. 481 (2), 1000–1003 (2018).

    Article  Google Scholar 

  9. A. N. Didenko and A. I. Khanchuk, “Change in the geodynamic settings in the Pacific‒Eurasia transition zone at the end of the Early Cretaceous,” Dokl. Earth Sci. 487 (2), 873–876 (2019).

    Article  Google Scholar 

  10. L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Tectonics of Lithospheric Plates of the USSR Territory (Nedra, Moscow, 1990), Vol. 2 [in Russian].

    Google Scholar 

  11. S. V. Zyabrev, “On the biostratigraphy of accretionary complexes in the Far East (critical review of several papers),” Russ. J. Pac. Geol. 3 (3), 298–306 (2009).

    Article  Google Scholar 

  12. V. A. Kaidalov, V. I. Anoikin, and T. D. Belomestnova, State Geological Map of the Russian Federation. 1 : 200 000. Sheet M-54-I: Explanatory Note (VSEGEI, St. Petersburg, 2009) [in Russian].

  13. I. V. Kemkin and A. I. Khanchuk, “First age data on the paraautochthon of the Samarka accretionary complex, southern Sikhote-Alin),” Dokl. Akad. Nauk 324 (4), 847–851 (1992).

    Google Scholar 

  14. I. V. Kemkin and A. I. Khanchuk, “Jurassic accretionary complex of southern Sikhote-Alin,” Tikhookean. Geol., No. 5, 31–42 (1993).

  15. I. V. Kemkin, Mesozoic Geodynamic Evolution of and Sea of Japan Region (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  16. I. V. Kemkin and A. N. Filippov, “A response to S.V. Zyabrev’s critical paper entitled “On the biostratigraphy of accretionary complexes of the Far East: a critical review of several papers,” Russ. J. Pac. Geol. 4 (1), 91–94 (2010).

    Article  Google Scholar 

  17. G. L. Kirillova, B. A. Natal’in, and S. V. Zyabrev, Triassic–Jurassic Accretionary Complex of the East Asian Continental Margin on the Right Bank of the Amur River in the City of Khabarovsk Area. A Guidebook of Geological Excursion (DVO RAN, Khabarovsk, 2007) [in Russian].

    Google Scholar 

  18. N. N. Kruk, V. V. Golozubov, V. I. Kiselev, E. A. Kruk, S. N. Rudnev, P. A. Serov, S. A. Kasatkin, and E. Yu. Moskalenko, “Paleozoic granitoids of the southern part of the Voznesenka Terrane (Southern Primorye): age, composition, melt sources, and tectonic settings,” Russ. J. Pac. Geol. 12 (3), 190–209 (2018).

    Article  Google Scholar 

  19. P. V. Markevich, V. P. Konovalov, A. I. Malinovsky, and A. N. Filippov, Lower Cretaceous Sediments of Sikhote-Alin (Dal’nauka, Vladivostok, 2000) [in Russian].

    Google Scholar 

  20. M. V. Martynyuk, A. F. Vas’kin, A. S. Vol’skii, et al., Geological Map of the Khabarovsk Krai and Amur Oblast. 1 : 2 500 000: Explanatory Note, (Khabarovsk, 1991) [in Russian].

  21. B. A. Natal’in and S. N. Alekseenko, “Structure of the Lower Cretaceous sediments of the Basement of the Middle Amur Basin,” Tikhookean. Geol., No. 1, 37–46 (1989).

  22. B. A. Natal’in and C. V. Zyabpev, Structure of Mesozoic Sequences of the Amur River Valley. A Guidebook of Geological Excursions (IGIG DVO AN SSSR, Khabarovsk, 1989) [in Russian].

    Google Scholar 

  23. B. A. Natal’in and I. B. Borukaev, “Mesozoic structures on the southern Soviet Far East,” Geotektonika, No. 1, 84–96 (1991).

    Google Scholar 

  24. B. A. Natal’in, “Mesozoic accretionary and collisional tectonics of the southern Soviet Far East,” Tikhookean. Geol. 20 (5), 3–23 (1991).

    Google Scholar 

  25. B. A. Natal’in and M. Faure, “Mesozoic Geodynamics of the East Asian Margin,” Tikhookean. Geol., No. 6, 2–24 (1991).

  26. B. A. Natal’in, M. Faure, P. Monier, Ch. B. Borukaev, V. S. Prikhod’ko, and A. A. Vrublevskii, “Anyui metamorphic dome (Sikhote-Alin) and its significance for Mesozoic geodynamic evolution of East Asia,” Tikhookean. Geol., No. 6, 3–25 (1994).

  27. L. M. Parfenov and B. A. Natal’in, “Tektonic evolution of Northeast Asia in the Mesozoic and Cenozoic,” Dokl. Akad Nauk SSSR 235 (5), 1132–1135 (1977).

    Google Scholar 

  28. L. M. Parfenov, B. A. Natal’in, I. P. Voinova, and L. I. Popeko, “Tektonic evolution of the active continental margins on the northwestern Pacific framing,” Geotektonika, No. 1, 85–104 (1981).

    Google Scholar 

  29. L. M. Parfenov, “Continental margins, island arcs in Mesozoides of Northeast Asia and kinematics of Mesozoic folding. Paper 2. Mesozoides of Sikhote-Alin: common structural tendencies and evolution and history of Mesozoid formation,” Tikhookean. Geol., No. 4, 3–16 (1983).

  30. Parfenov, L.M., Continental Margins and Island Arcs of Northeastern Asian Mesozoides (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  31. L. M. Parfenov, U. J. Nokleberg, and A. I. Khanchuk, “Principles of compilation and and major units of legend to the geodynamic map of northern and Central Asia, southern Russian Far East, Korea, and Japan,” Tikhookean. Geol. 17 (3), 3–13 (1988).

    Google Scholar 

  32. L. M. Parfenov, N. A. Berzin, A. I. Khanchuk, G. Badarch, V. G. Belichenko, A. N. Bulgatov, S. I. Dril’, G. L. Kirillova, M. I. Kuz’min, U. Nokleberg, A. V. Prokop’ev, V. F. Timofeev, O. Tomurtogoo, and H. Yan, “Model of the formation of orogenic belts of Central and Northeast Asia,” Tikhookean. Geol. 22 (6), 7–41 (2003).

    Google Scholar 

  33. I. I. Sei and E. D. Kalacheva, Biostratigraphy of the Lower and Middle Jurassic Sediments of Far East (Nedra, Leningrad, 1980) [in Russian].

    Google Scholar 

  34. A. A. Sorokin, A. B. Kotov, E. B. Sal’nikova, et al., “Early Paleozoic granitoids in the Lesser Khingan Terrane, Central Asian Foldbelt: age, geochemistry, and geodynamic interpretations,” Petrology 19 (6), 601–617 (2011).

    Article  Google Scholar 

  35. V. E. Khain and M. G. Lomize, Geotectonics with Geodynamic Principles: A Textbook (KDU, Moscow, 2005) [in Russian].

    Google Scholar 

  36. A. I. Khanchuk, I. V. Panchenko, and I. V. Kemkin, Geodynamic Evolution of Sikhote-Alin and Sakhalin in the Late Paleozoic and Mesozoc, Preprint (DVO AN SSSR, Vladivostok, 1988) [in Russian].

    Google Scholar 

  37. A. I. Khanchuk, “Paleogeodynamic analysis of the formation of ore deposits of Far East,” in Ore Deposits of Continental Margins (Dal’nauka, Vladivostok, 2000), pp. 5–34 [in Russian].

    Google Scholar 

  38. A. I. Khanchuk, V. V. Golozubov, V. P. Simanenko, and A. I. Malinovskii, “Giant folds with steeply dipping hinges in structures of orogenic belts: evidence from Sikhote Alin,” Dokl. Earth Sci. 395 (2), 165–169 (2004).

    Google Scholar 

  39. A. I. Khanchuk, A. V. Grebennikov, and V. V. Ivanov, “Albian–Cenomanian orogenic belt and igneous province of Pacific Asia,” Russ. J. Pac. Geol. 13 (3), 187–219 (2019).

    Article  Google Scholar 

  40. E. K. Shevelev, “On question of age of volcanogenic–siliceous–terrigenous sediments of the basement of the Middle Amur Basin,” Tikhookean. Geol., No. 3, 13–16 (1987).

  41. P. A. Cawood, C. J. Hawkesworth, and B. Dhuime, “Detrital zircon record and tectonic setting,” Geol. 40 (10), 875–878 (2012).

    Article  Google Scholar 

  42. D. J. Cherniak and E. B. Watson, “Pb diffusion in zircon,” Chem. Geol. 172 (1−2), 5–24 (2001).

    Article  Google Scholar 

  43. K. C. Condie, “The supercontinent cycle,” Earth as an Evolving System, 2nd ed. (Acad. Press, New York, 2011).

    Google Scholar 

  44. F. Corfu, J. M. Hanchar, P. W. O. Hosikin, and P. Kinny, “Atlas of zircon textures,” Ed. by J. M. Hanchar and P. W. O. Hoskin, Zircon, Rev. Mineral. Geochem. 53, 469–500 (2003).

  45. A. N. Didenko, V. Yu. Vodovozov, A. Yu. Peskov, V. A. Guryanov, and A. N. Kosynkin, “Paleomagnetism of the Ulkan Massif (SE Siberian Platform) and the apparent polar wander path for Siberia in Late Paleoproterozoic–Early Mesoproterozoic times,” Precambrian Res. 259, 58–77 (2015).

    Article  Google Scholar 

  46. R. E. Ernst, M. A. Hamilton, U. Söderlund, J. A. Hanes, D. P. Gladkochub, A. V. Okrugin, T. Kolotilina, A. S. Mekhonoshin, W. Bleeker, A. N. LeCheminant, K. L. Buchan, K. R. Chamberlain, and A. N. Didenko, “Long-lived connection between southern Siberia and Northern Laurentia in the Proterozoic,” Nature Geosci. 9 (6), 464–469 (2016). https://doi.org/10.1038/ngeo2700

    Article  Google Scholar 

  47. C. M. Fedo, K. Sircombe, and R. Rainbird, “Detrital zircon analysis of the sedimentary record,” Zircon, Ed. by J. M. Hanchar and P. W. O. Hoskin, Rev. Mineral. Geochem. 53, 277–303 (2003).

    Google Scholar 

  48. G. Gehrels, “Detrital zircon U-Pb geochronology: current methods and new opportunities,” Tectonics of Sedimentary Basins: Recent Advances, Ed. by C. Busby and A. Azor, (Blackwell, 2012), pp. 47–62.

    Google Scholar 

  49. J. Guynn and G. E. Gehrels, Comparison of detrital zircon age distribution using the K–S test: Univ. Arizona LaserChron Center online manual, 2006. https://docs.google.com/file/d/0B9ezu34P5h8eZWZmOWUzOTItZDgyZi00NDRiLWI4ZTctNTljNT-M5OTU1MGUz /edit ?hl =enandpli =1.

  50. J. Guynn and G. Gehrels, “Comparison of detrital zircon age distributions using the K–S Test” (2010). https://sites.google.com/a/laserchron.org/laserchron/home/ (Tools/Proposal Tools).

  51. International Chronostratigraphic Chart. International Commission on Stratigraphy. 8 (2018). http://www.stratigraphy.org/.

  52. K. Ishida, N. Ishida, T. Sakai, T. Kozai, T. Ohta, G. L. Kirillova, “Radiolarians from the Khabarovsk section,” Upper Jurassic–Cretaceous Deposits of East Asian Continental Margin along the Amur River. Field Excursion Guidebook, Ed. by G. L. Kirillova B. A. Natal’in, S. V. Zyabrev, T. Sakai, K. Ishida, N. Ishida, T. Ohta, and T. Kozai (Khabarovsk, 2002), pp. 23–25.

  53. H. Iwano, Y. Orihashi, T. Hirata, M. Ogasawara, T. Danhara, K. Horie, N. Hasebe, S. Sueoka, A. Tamura, Y. Hayasaka, A. Katsube, H. Ito, K. Tani, J. Kimura, Q. Chang, Y. Kouchi, Y. Haruta, and K. Yamamoto, “An inter-laboratory evaluation of OD-3 zircon for use as a secondary U-Pb dating standard,” Island Arc 22 (3), 382–394 (2013).

    Article  Google Scholar 

  54. Y. Kawagoe, S. Sano, Y. Orihashi, H. Obara, Y. Kouchi, and S. Otoh, “New detrital zircon age data from the Tetori Group in the Mana and Itoshiro areas of Fukui Prefecture, Central Japan,” Mem. Fukui Prefectural Dinosaur Museum 11, 1–18 (2012).

    Google Scholar 

  55. A. I. Khanchuk and I. V. Kemkin, “Jurassic geodynamic history of the Sikhote-Alin–Priamurye Region,” Late Jurassic Margin of Laurasia—A Record of Faulting Accommodating Plate Rotation, GSA Spec. Pap. 513, 509–526 (2015).

    Google Scholar 

  56. A. I. Khanchuk, I. V. Kemkin, and N. N. Kruk, “The Sikhote-Alin orogenic belt, Russian South East: terranes and the formation of continental lithosphere based on geological and isotopic data,” J. Asian Earth Sci. 120, 117–138 (2016). https://doi.org/10.1016/j.jseaes.2015.10.023

    Article  Google Scholar 

  57. K. R. Ludwig, “User’s manual for Isoplot 3.75: a geochronological toolkit for Microsoft Excel,” Berkeley Geochronol. Center, Spec. Publ., No. 5 (2012).

  58. Y. Orihashi, S. Nakai, and T. Hirata, “U-Pb age determination for seven standard zircons using inductively coupled plasma-mass spectrometry coupled with frequency quintupled Nd-YAG (λ = 213 nm) laser ablation system: comparison with LA-ICP-MS zircon analyses with a NIST glass reference material,” Resource Geol. 58, 101–123 (2008). https://doi.org/10.1111/j.1751-3928.2008.00052.x

    Article  Google Scholar 

  59. H. Sagong, S.-T. Kwon, and J.-H. Ree, “Mesozoic episodic magmatism in South Korea and its tectonic implication,” Tectonics 24 (5002), 1–18 (2005). https://doi.org/10.1029/2004TC001720

    Article  Google Scholar 

  60. Y. Tsutsumi, K. Yokoyama, S. A. Kasatkin, and V. V. Golozubov, “Zircon U-Pb age of granitoids in the Maizuru Belt, Southwest Japan and Voznesenka Belt, Far East Russia,” J. Mineral. Petrol. Sci. 109 (2), 97–102 (2014).

    Article  Google Scholar 

  61. T. Wan, The Tectonics of China: Data, Maps and Evolution (Springer Higher Education Press–Springer-Verlag, Berlin–Heidelberg–Beijing, 2010).

  62. M. Wiedenbeck, J. M. Hanchar, W. H. Peck, P. Sylvester, J. Valley, M. Whitehouse, A. Kronz, Y. Morishita, L. Nasdala, J. Fiebig, I. Franchi, J.-P. Girard, R. C. Greenwood, R. Hinton, N. Kita, P. R. D. Mason, M. Norman, M. Ogasawara, P. M. Piccoli, D. Rhede, H. Satoh, B. Schulz-Dobrick, O. Skar, M. J. Spicuzza, K. Terada, A. Tindle, S. Togashi, T. Vennemann, Q. Xie, and T.-F. Zheng, “Further characterisation of the 91500 zircon crystal,” Geostand. Geoanal. Res. 28, 9–39 (2004).

    Article  Google Scholar 

  63. F. Y. Wu, D. Y. Sun, W. C. Ge, Y. B. Zhang, M. L. Grant, S. A. Wilde, and B. M. Jahn, “Geochronology of the Phanerozoic granitoids in Northeastern China,” J. Asian Earth Sci. 41, 1–30 (2011).

    Article  Google Scholar 

  64. S. Zyabrev and A. Matsuoka, “Late Jurassic (Tithonian) radiolarians from a clastic unit of the Khabarovsk Complex (Russian Far East): significance for subduction accretion timing and terrane correlation,” The Island Arc 8, 30–37 (1999).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.I. Khanchuk, whose valuable comments and suggestions were taken into consideration in reviewing the manuscript. Thanks are extended to reviewers N.N. Kruk and A.A. Sorokin, whose comments and suggestions improved the content of the paper. Special thanks to S.V. Zyabrev for being most helpful in choosing research targets and for participating in the fieldwork. The authors express appreciation to E.Yu. Didenko and O.M. Menshikova for help in preparing the manuscript for publication and drivers S.V. Burya and V.I. Chepilov, who ensured the coordinated group fieldwork .

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 18-05-00117A) and carried out through the State Assignment for the Institute of Tectonics and Geophysics, Far East Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Didenko.

Additional information

Recommended for publishing by A.I. Khanchuk

Translated by T. Koryakina

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didenko, A.N., Otoh, S., Kudymov, A.V. et al. Tectonic Implications: Zircon age of Sedimentary Rocks from Khabarovsk, Samarka, and Zhuravlevka-Amur Terranes in the Northern Sikhote-Alin Orogenic Belt. Russ. J. of Pac. Geol. 14, 1–19 (2020). https://doi.org/10.1134/S1819714020010030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714020010030

Keywords:

Navigation