Skip to main content
Log in

On a Possible Wave Mechanism for an Increase in the Yields of Low-Energy Nuclear Reactions in Crystal Structures

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The possibility of using one of the properties of wave propagation in periodic structures is considered to explain the known effect of an increase in the yields of nuclear DD reactions in crystalline films. The effect is observed under the bombardment of deuterated metal foil targets with an oxide film by low-energy deuterons (less than 100 keV) in the majority of metals: the yield increases many times as compared with the expected yield when extrapolating the data obtained for high-energy deuterons. Proceeding from the analogy between equations describing the propagation of a light wave in a photonic crystal and that of a particle in a crystal, the conclusion that the properties of the wave functions of particles in a crystal and of the light field in a photonic crystal are analogous is drawn. Forbidden bands with transparency windows can exist in the spectrum of the particles; their properties are also analogous to those of the windows in a photonic crystal. The amplitude of the wave function of a massive particle incident on a crystal can increase in them, which must be taken into account when considering the increase in the yields of nuclear reactions with the participation of moving particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. V. Bagulya, O. D. Dalkarov, M. A. Negodaev, et al., Bull. Lebedev Phys. Inst. 39 (9), 247 (2012).

    Article  Google Scholar 

  2. A. V. Bagulya, O. D. Dalkarov, M. A. Negodaev, et al., Bull. Lebedev Phys. Inst. 39 (12), 325 (2012).

    Article  Google Scholar 

  3. F. Raiola, P. Migliardi, G. Gyurky, et al., Eur. Phys. J. A 13, 377 (2002).

    Article  CAS  Google Scholar 

  4. F. Raiola, P. Migliardi, L. Gang, et al., Phys. Lett. B 547, 193 (2002).

    Article  CAS  Google Scholar 

  5. A. G. Lipson, A. S. Rusetskii, A. B. Karabut, and G. Miley, J. Exp. Theor. Phys. 100 (6), 1175 (2005).

    Article  CAS  Google Scholar 

  6. H. S. Bosch and G. M. Halle, Nucl. Fusion 32, 611 (1994).

    Article  Google Scholar 

  7. V. V. Kapaev, Sov. J. Quantum Electron. 19, 1460 (1989).

    Article  Google Scholar 

  8. J. M. Bendickson, J. P. Dowling, and M. Scalora, Phys. Rev. E 53, 4107 (1996).

    Article  CAS  Google Scholar 

  9. C. De Angelis, F. Gringoli, M. Midrio, D. Modotto, J. S. Aitchison, G. F. Nalesso, J. Opt. Soc. Am. B 18, 348 (2001).

    Article  CAS  Google Scholar 

  10. G. Dovbeshko, O. Fesenko, V. Boyko, V. Romanyuk, V. Gorelik, V. Moiseenko, V. Sobolev, V. Shvalagin, Ukr. J. Phys. 57 (2), 154 (2012).

    CAS  Google Scholar 

  11. V. S. Gorelik, A. D. Kudryavtseva, N. V. Tcherniega, A. I. Vodchits, and V. A. Orlovich, J. Russ. Laser Res. 34 (1), 50 (2013).

    Article  CAS  Google Scholar 

  12. W. C. L. Hopman, H. J. W. M. Hoekstra, R. Dekker, L. Zhuang, and R. M. de Ridder, Opt. Express 15, 1851 (2007).

    Article  CAS  Google Scholar 

  13. A. A. Kraiski and A. V. Kraiski, Bull. Lebedev Phys. Inst. 45 (2), 56 (2018).

    Article  Google Scholar 

  14. L. D. Landau and E. M. Lifshits, Quantum Mechanics (Nauka, Moscow, 1974), p. 752 [in Russian].

    Google Scholar 

  15. Y. E. Kim, Y. J. Kim, A. L. Zubarev, and J. H. Yoon, Phys. Rev. C 55, 801 (1997).

    Article  CAS  Google Scholar 

  16. Y. E. Kim and A. L. Zubarev, in Proc. Int. Conf. Cold Fusion–11 (Marseilles, France, 31 October–5 November 2004) (World Scientific, Hackensack, NJ, 2006), p. 711.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kraiski.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraiski, A.A., Kraiski, A.V. On a Possible Wave Mechanism for an Increase in the Yields of Low-Energy Nuclear Reactions in Crystal Structures. J. Surf. Investig. 14, 333–336 (2020). https://doi.org/10.1134/S102745102002010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102002010X

Keywords:

Navigation