Skip to main content
Log in

Submicrostructure and Characteristics of the Short-Range Atomic Order in an Amorphous Ti–Ni–Ta–Zr-Based Surface Alloy Formed on a TiNi Substrate by the Electron-Beam Method

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

This study presents the results of studying the microstructure and topological short-range atomic order in an amorphous Ti−Ni−Тa−Zr-based surface alloy formed by the additive method through pulsed electron-beam liquid-phase mixing of the “Ti70Ta30 film (50 nm)/Zr film (100 nm)/TiNi substrate” system. It is shown that an amorphous structure with a thickness of 2 μm is formed in the cross-section of the surface alloy and is characterized by the gradient chemical composition. It is found that the transition sublayer adjacent to the TiNi substrate has a nanocomposite crystalline structure based on the Ti2Ni intermetallic compound. By means of the atomic radial distribution function method, using electron nanobeam diffraction data, a study of the topological short-range atomic order in the amorphous layer is performed. It is shown that the atomic structure in the amorphous surface Ti−Ni−Тa−Zr alloy has a cluster structure which can be described by the superposition of coordination polyhedra interconnected with each other by common faces corresponding to the different crystalline devitrification phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Jafary-Zadeh, G. P. Kumar, P. S. Branicio, et al., J. Funct. Biomater. 9, 1 (2018). https://doi.org/10.3390/jfb9010019

    Article  CAS  Google Scholar 

  2. M. M. Khan, A. Nemati, Z. U. Rahman, et al., Crit. Rev. Solid State Mater. Sci. 43, 1 (2017). https://doi.org/10.1080/10408436.2017.1358149

    Article  CAS  Google Scholar 

  3. F. Qin, Z. Dan, X. Wang, et al., in Biomedical Engineering,Trends in Materials Science (Intech Open, Singapore, 2011), p. 249. https://doi.org/10.5772/13437

    Google Scholar 

  4. D. V. Louzguine-Luzgin, K. Georgarakis, A. R. Yavari, et al., J. Mater. Res. 24, 274 (2009). https://doi.org/10.1557/JMR.2009.0031

    Article  CAS  Google Scholar 

  5. Z. W. Wu, M. Z. Li, W. H. Wang, et al., Nat. Commun. 6, 6035 (2015). https://doi.org/10.1038/ncomms7035

    Article  CAS  Google Scholar 

  6. K. Georgarakis, A. R. Yavari, D. V. Louzguine-Luzgin, et al., Appl. Phys. Lett. 94, 191912 (2009). https://doi.org/10.1063/1.3136428

    Article  CAS  Google Scholar 

  7. J. Antonowicz, D. V. Louzguine-Luzgin, A. R. Yavari, et al., J. Alloys Compd. 471, 70 (2009). https://doi.org/10.1016/j.jallcom.2008.03.092

    Article  CAS  Google Scholar 

  8. S. Sarker, D. Isheim, G. King, et al., Sci. Rep. 8, 6084 (2018). https://doi.org/10.1038/s41598-018-24433-9

    Article  CAS  Google Scholar 

  9. A. Hirata, L. J. Kang, T. Fujita, et al., Science 341, 376 (2013). https://doi.org/10.1126/science.1232450

    Article  CAS  Google Scholar 

  10. L. L. Meisner, A. B. Markov, V. P. Rotshtein, et al., J. Alloys. Compd. 730, 376 (2018). https://doi.org/10.1016/j.jallcom.2017.09.238

    Article  CAS  Google Scholar 

  11. S. N. Meisner, E. V. Yakovlev, V. O. Semin, et al., Appl. Surf. Sci. 437, 217 (2018). https://doi.org/10.1016/j.apsusc.2017.12.107

    Article  CAS  Google Scholar 

  12. L. L. Meisner, A. B. Markov, G. E. Ozur, V. P. Rotshtein, S. N. Meisner, E. V. Yakovlev, E. Yu. Gudimova, and V. O. Semin, Russ. Fed. Patent No. 2017137653/15(065731) (11 April 2018).

  13. D. V. Louzguine-Luzgin, S. V. Ketov, A. S. Trifonov, et al., J. Alloys Compd. 742, 512 (2018). https://doi.org/10.1016/j.jallcom.2018.01.290

    Article  CAS  Google Scholar 

  14. A. P. Wang, X. C. Chang, W. L. Hou, et al., Mater. Sci. Eng., A 449–451, 277 (2007). https://doi.org/10.1016/j.msea.2006.02.366

    Article  CAS  Google Scholar 

  15. H. Skliarova, O. Azzolini, R. R. Johnson, et al., J. Alloys Compd. 639, 488 (2015). https://doi.org/10.1016/j.jallcom.2015.03.181

    Article  CAS  Google Scholar 

  16. H. Jia, F. Liu, Z. An, et al., Thin Solid Films 561, 2 (2014). https://doi.org/10.1016/j.tsf.2013.12.024

    Article  CAS  Google Scholar 

  17. G.-M. Chow, in Nanostructured Films and Coatings, Ed. by G.-M. Chow, I. A. Ovid’ko, and T. Tsakalakos (Springer, Dordrecht, 2000), p. 283.

    Book  Google Scholar 

  18. A. B. Markov, A. V. Mikov, G. E. Ozur, et al., Instrum. Exp. Tech. 54 (6), 862 (2011).

    Article  Google Scholar 

  19. A. Coda, S. Zilio, D. Norwich, et al., J. Mater. Eng. Perform. 21, 2572 (2012). https://doi.org/10.1007/s11665-012-0366-1

    Article  CAS  Google Scholar 

  20. F. Sczerzenie, G. Vergani, and C. Belden, J. Mater. Eng. Perform. 21, 2578 (2012). https://doi.org/10.1007/s11665-012-0377-y

    Article  CAS  Google Scholar 

  21. L. L. Meisner, A. B. Markov, D. I. Proskurovsky, et al., Surf. Coat. Technol. 302 (2016), 495. https://doi.org/10.1016/j.surfcoat.2016.06.036

    Article  CAS  Google Scholar 

  22. L. L. Meisner, V. P. Rotshtein, A. B. Markov, et al., Procedia Struct. Integ. 2, 1465 (2016). https://doi.org/10.1016/j.prostr.2016.06.186

    Article  Google Scholar 

  23. D. J. H. Cockayne and D. R. McKenzie, Acta Crystallogr. A 44, 870 (1988). https://doi.org/10.1107/S0108767388004957

    Article  Google Scholar 

  24. D. J. H. Cockayne, Annu. Rev. Mater. Res. 37, 159 (2007). https://doi.org/10.1146/annurev.matsci.35.082803.103337

    Article  CAS  Google Scholar 

  25. E. J. Kirkland, Advanced Computing in Electron Microscopy (Plenum Press, New York, 1998).

    Book  Google Scholar 

  26. J. Shanmugam, K. B. Borisenko, Y.-J. Chou, et al., SoftwareX 6, 185 (2017). https://doi.org/10.1016/j.softx.2017.07.001

    Article  Google Scholar 

  27. C. Gammer, C. Mangler, C. Rentenberger, et al., Scr. Mater. 63, 312 (2010). https://doi.org/10.1016/j.scriptamat.2010.04.019

    Article  CAS  Google Scholar 

  28. A. L. Zuev and K. G. Kostarev, Phys.–Usp. 51, 1027 (2008). https://doi.org/10.3367/UFNr.0178.200810d.1065

    Article  Google Scholar 

  29. J. X. Zou, T. Grosdidier, K. M. Zhang, et al., Eur. Phys. J.: Appl. Phys. 43, 327 (2008).

    CAS  Google Scholar 

  30. L. L. Meisner, V. O. Semin, Y. P. Mironov, et al., Mater. Today Commun. 17, 169 (2018). https://doi.org/10.1016/j.mtcomm.2018.08.018

    Article  CAS  Google Scholar 

  31. J. Zou, K. Zhang, and T. Grosdidier, Int. J. Heat Mass Transfer 64, 1172 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.036

    Article  CAS  Google Scholar 

  32. G. A. Bleikher and V. P. Krivobokov, Erosion of Solid Surface Exposed to High-Power Beams of Charged Particles (Nauka, Novosibirsk, 2014) [in Russian].

    Google Scholar 

  33. V. O. Semin, Mater. Res. Proc. 9, 68 (2918). https://doi.org/10.21741/9781644900017-14

  34. W. Zhang, K. Arai, J. Qiang, et al., Mater. Sci. Forum 561–565, 1421 (2007). https://doi.org/10.4028/www.scientific.net/MSF.561-565.1421

  35. Y. Du, H. Xu, Y. Zhou, et al., Mater. Sci. Eng., A 448, 210 (2007).

    Article  Google Scholar 

  36. M. C. Yeh, J. L. Li, P. J. Lo, et al., J. Phase Equilib. Diffus. 35, 157 (2014). https://doi.org/10.1007/s11669-013-0271-9

    Article  CAS  Google Scholar 

  37. Y. Motemani, P. J. McCluskey, C. Zhao, et al., Acta Mater. 59, 7602 (2011). https://doi.org/10.1016/j.actamat.2011.08.026

    Article  CAS  Google Scholar 

  38. G. A. Yurko, J. W. Barton, and J. G. Parr, Acta Crystallogr. 12, 909 (1959). https://doi.org/10.1107/S0365110X59002559

    Article  CAS  Google Scholar 

  39. W. C. Winegard, An Introduction to the Solidification of Metals (Institute of Metals, London, 1964; Mir, Moscow, 1967)

  40. K. Suzuki, H. Fujimori, and K. Hashimoto, Materials Science of Amorphous Metals, Ed. by T. Mosumoto (Ohmu, Tokyo, 1982; Metallurgiya, Moscow, 1987).

  41. V. G. Pushin, S. D. Prokoshkin, R. Z. Valiev, et al., Memory Shape Titanium Nickelide Alloys. 1. Structure, Phase Transformation and Properties (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2006).

    Google Scholar 

  42. A. I. Oreshkin, V. N. Mantsevich, S. V. Savinov, et al., Acta Mater. 61, 5216 (2013). https://doi.org/10.1016/j.actamat.2013.05.014

    Article  CAS  Google Scholar 

  43. E. A. Brandes and G. B. Brook, Smithells Metal Reference Book (Butterworth-Heinemann, Oxford, 1992), p. 1794.

    Google Scholar 

  44. P. Pyykkö and M. Atsumi, Chem. – Eur. J. 15, 186 (2009). https://doi.org/10.1002/chem.200800987

    Article  CAS  Google Scholar 

  45. F. R. de Boer, Cohesion in Metals: Transition Metal Alloys (Elsevier, Amsterdam, 1988).

    Google Scholar 

  46. S. P. Pan, J. Y. Qin, W. M. Wang, et al., Phys. Rev. B 84, 092201 (2011). https://doi.org/10.1103/PhysRevB.84.092201

  47. I. B. Kekalo, Atomic Structure of Amorphous Alloys and Its Evolution (Ucheba, MISiS, Moscow, 2006) [in Russian].

  48. Y. Liu, G. Schumacher, X. F. Bian, et al., J. Non-Cryst. Solids 422, 26 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.05.001

    Article  CAS  Google Scholar 

  49. K. B. Aleinikova and A. A. Zmeikin, Vestn. VGU, Ser.: Phys. Matem., No. 1, 5 (2009).

  50. K. B. Aleinikova, E. N. Zinchenko, and A. A. Zmeikin, Glass Phys. Chem. 44, 307 (2018). https://doi.org/10.1134/S108765961804003X

    Article  CAS  Google Scholar 

  51. Yu. K. Kovneristyi, E. K.Osipov, and E. A. Trofimov, Physicochemical Foundations for the Production of Amorphous Metal Alloys (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  52. R. C. Ruhl, B. C. Giessen, M. Cohen, et al., J. Less-Common Met. 13, 611 (1967).

    Article  CAS  Google Scholar 

  53. Y. Motemani, P. M. Kadletz, B. Maier, et al., Adv. Eng. Mater. 17, 1425 (2015). https://doi.org/10.1002/adem.201400576

    Article  CAS  Google Scholar 

  54. S. Banumathy, R. K. Mandal, and A. K. Singh, J. Appl. Phys. 106, 093518 (2009). https://doi.org/10.1063/1.3255966

    Article  CAS  Google Scholar 

  55. A. G. Gonzalez-Hernandez, Y. Diaz, and R. Gonzalez-Hernandez, J. Phys.: Conf. Ser. 1119, 012010 (2018). https://doi.org/10.1088/1742-6596/1119/1/012010

    Article  CAS  Google Scholar 

  56. I. Levin, V. Krayzman, C. Chiu, et al., Acta Mater. 60, 645 (2012). https://doi.org/10.1016/j.actamat.2011.10.021

    Article  CAS  Google Scholar 

  57. I. Kornilov, O. K. Belousov, and E. V. Kachur, Titanium Nickelide and Other Alloys with the Memory Effect (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  58. K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008). https://doi.org/10.1107/S0021889808012016

    Article  CAS  Google Scholar 

  59. D. B. Miracle and O. N. Senkov, Mater. Sci. Eng., A 347, 50 (2003). https://doi.org/10.1016/S0921-5093(02)00579-8

    Article  Google Scholar 

  60. D. R. G. Mitchell and T. C. Petersen, Microsc. Res. Tech. 75, 153 (2012). https://doi.org/10.1002/jemt.21038

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the leading researchers of the Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, A.B. Markov and prof. G.E. Ozur for organizing and performing surface treatment of the investigated materials; and prof. V.P. Rotshtein for his constant interest in this study, useful advice, and discussion of the results of the investigations.

Funding

This work was performed in the framework of the Program of fundamental scientific research of the State Academies of Sciences for 2013–2020 (project no. III.23.2.1). Electron-beam treatment of the sample surface and multicomponent alloying of the surface layer of TiNi alloy were supported by the Russian Science Foundation, project no. 18-19-00198 (on April 26, 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Semin.

Additional information

Translated by E. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semin, V.O., Meisner, L.L., Neiman, A.A. et al. Submicrostructure and Characteristics of the Short-Range Atomic Order in an Amorphous Ti–Ni–Ta–Zr-Based Surface Alloy Formed on a TiNi Substrate by the Electron-Beam Method. J. Surf. Investig. 14, 396–411 (2020). https://doi.org/10.1134/S1027451020020147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020020147

Keywords:

Navigation