Skip to main content
Log in

Charge Effects in the Dielectric Films of MIS Structures under the Concurrent Influence of Radiation and High-Field Electron Injection

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Based on the obtained experimental data, a model is developed for the processes of a variation in the charge state of MIS (metal–insulator–semiconductor) structures under the concurrent influence of high-field tunneling electron injection and radiation. The model takes into account the interaction between injected electrons and charges appearing in the dielectric film due to radiation and high-field ionization. It is shown that some holes may be annihilated during the interaction between injected electrons and holes trapped in a SiO2 film, thus leading to the formation of surface states at the interface with silicon. The effect of the electric-field intensity and injection current density on the generation and annihilation of positive charge and the formation of surface states under radiation is studied. The effect of charge processes occurring in the insulator film of a MIS structure under the concurrent action of radiation and high-field electron injection on a change in the threshold voltage of MIS devices and radiation sensors based on them is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. R. Schwank, M. R. Shaneyfelt, D. M. Fleetwood, et al., IEEE Trans. Nucl. Sci. 55, 1833 (2008). https://doi.org/10.1109/TNS.2008.2001040

    Article  CAS  Google Scholar 

  2. D. M. Fleetwood, IEEE Trans. Nucl. Sci. 65, 1465 (2018). https://doi.org/10.1109/TNS.2017.2786140

    Article  CAS  Google Scholar 

  3. F. Ravotti, IEEE Trans. Nucl. Sci. 65, 1440 (2018). https://doi.org/10.1109/TNS.2018.2829864

    Article  CAS  Google Scholar 

  4. E. Chatzikyriakou, K. Morgan, and C. H. Kees De Groot, IEEE Trans. Electron Devices 65 (3), 808 (2018). https://doi.org/10.1109/TED.2018.2792305

    Article  CAS  Google Scholar 

  5. T. R. Oldham and F. B. McLean, IEEE Trans. Nucl. Sci. 50 (3), 483 (2003). https://doi.org/10.1109/TNS.2003.812927

    Article  CAS  Google Scholar 

  6. V. S. Pershenkov, Facta Univ., Ser.: Electronics Energetics 28 (4), 557 (2015). https://doi.org/10.2298/FUEE1504557P

    Article  Google Scholar 

  7. G. I. Zebrev, V. V. Orlov, M. S. Gorbunov, and M. G. Drosdetsky, Microelectron. Reliab. 84, 181 (2018). https://doi.org/10.1016/j.microrel.2018.03.014

    Article  CAS  Google Scholar 

  8. N. A. Kulikov and V. D. Popov, Semiconductors 53, 110 (2019). https://doi.org/10.1134/S1063782619010123

    Article  CAS  Google Scholar 

  9. O. V. Aleksandrov, Semiconductors 49 (6), 774 (2015).

    Article  CAS  Google Scholar 

  10. D. V. Andreev, G. G. Bondarenko, V. V. Andreev, et al., Acta Phys. Pol. A 132, 245 (2017). https://doi.org/10.12693/APhysPolA.132.245

    Article  CAS  Google Scholar 

  11. A. W. Strong, E. Y. Wu, R.-P. Vollertsen, et al., Reliability Wearout Mechanisms in Advanced CMOS Technologies (Wiley-IEEE Press, New York, 2009).

    Book  Google Scholar 

  12. V. V. Andreev, V. M. Maslovsky, D. V. Andreev, and A. A. Stolyarov, Proc. SPIE. Int. Conf. on Micro- and Nano-Electronics 11022, 1102207 (2019). https://doi.org/10.1117/12.2521985

  13. O. F. Siebel, J. G. Pereira, R. S. Souza, et al., Radiat. Meas. 75, 53 (2015). https://doi.org/10.1016/j.radmeas.2015.03.004

    Article  CAS  Google Scholar 

  14. M. M. Pejović, IEEE Trans. Nucl. Sci. 62, 1905 (2015). https://doi.org/10.1109/TNS.2015.2456211

    Article  CAS  Google Scholar 

  15. V. V. Andreev, G. G. Bondarenko, D. V. Andreev, and D. M. Akhmelkin, in Proc. 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT) (VShE, Moscow, 2018). https://doi.org/10.1109/MWENT.2018.8337203

  16. V. V. Andreev, G. G. Bondarenko, A. V. Romanov, and S. A. Loskutov, Perspekt. Mater., No. 12, 25 (2015).

  17. D. Arnold, E. Cartier, and D. J. DiMaria, Phys. Rev. B: Condens. Matter Mater Phys. 49, 10278 (1994).

    Article  CAS  Google Scholar 

  18. D. J. DiMaria, E. Cartier, and D. A. Buchanan, J. Appl. Phys. 80, 304 (1996).

    Article  CAS  Google Scholar 

  19. D. V. Andreev, G. G. Bondarenko, and A. A. Stolyarov, J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 10 (2), 450 (2016). https://doi.org/10.1134/S1027451016020221

    Article  CAS  Google Scholar 

  20. V. V. Andreev, V. M. Maslovsky, D. V. Andreev, and A. A. Stolyarov, Proc. SPIE. Int. Conf. on Micro- and Nano-Electronics 10224, 1022429 (2016). https://doi.org/10.1117/12.2267173

  21. F. Palumbo, C. Wen, S. Lombardo, et al., Adv. Funct. Mater. 1900657, 1 (2019). https://doi.org/10.1002/adfm.201900657

    Article  CAS  Google Scholar 

  22. D. M. Fleetwood, Microelectron. Reliab. 80, 266 (2018). https://doi.org/10.1016/j.microrel.2017.11.007

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed within the state task of the Ministry of Education and Science of the Russian Federation for the Bauman Moscow State Technical University (project no. 8.6779.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Andreev.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, D.V., Bondarenko, G.G., Andreev, V.V. et al. Charge Effects in the Dielectric Films of MIS Structures under the Concurrent Influence of Radiation and High-Field Electron Injection. J. Surf. Investig. 14, 260–263 (2020). https://doi.org/10.1134/S1027451020020196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020020196

Keywords:

Navigation