Skip to main content
Log in

Mathematical Study of the Water-Vapor Permeability of the Surface Layer of a Homogeneous Porous Material

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Permeability in relation to gases and liquids is one of the most important characteristics of porous materials. A porous material can interact with gases and liquids flowing through it in different ways that depend on a material’s permeability. Studies of the interaction of water vapor with materials with uniformly distributed pores are of considerable practical interest, since many of these materials are used in building and construction. Interest is also due to the possibility of expanding the study results obtained for an individual pore to a porous medium if this medium can be represented as a structure with uniformly distributed pores with sufficient accuracy. The dependence of the permeability of an individual cylindrical pore on its radius, length, and characteristics of the process of water-molecule interaction with the pore walls is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. F. Belyaev, V. K. Bobolev, A. I. Korotkov, et al., Deflagration-to-Detonation Transition in Condensed Systems (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  2. J. Rouquerol, D. Avnir, C. W. Fairbridge, et al., Pure Appl. Chem. 66, 1739 (1994).

    Article  CAS  Google Scholar 

  3. L. S. Leibenzon, Motion of Natural Liquids and Gases in Porous Media (Gostoptekhizdat, Moscow, 1947) [in Russian].

    Google Scholar 

  4. A. E. Scheidegger, The Physics of Flow through Porous Media (University of Toronto Press, Toronto, 1957; Gostoptekhizdat, Moscow, 1960).

  5. S. S. Zabrodskii, Hydrodynamics and Heat Transfer in a Pseudo-Liquid Layer (Gosenergoizdat, Moscow, 1963) [in Russian].

    Google Scholar 

  6. M. B. Janetti, Transp. Porous Media 125 (3), 633 (2018).

    Article  Google Scholar 

  7. I. P. Suzdalev, Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  8. Y.-H. Dong, Ch.-A. Wang, L.-F. Hu, and J. Zhou, Front. Mater. Sci. 6 (1), 79 (2012).

    Article  Google Scholar 

  9. R. Suman and D. Ruth, Transp. Porous Media 12, 185 (1993).

    Article  CAS  Google Scholar 

  10. H. D. Lugo-Mendez, F. J. Valdes-Parada, M. L. Porter, et al., Transp. Porous Media 107, 683 (2015).

    Article  CAS  Google Scholar 

  11. A. D. McNaught and A. Wilkinson, IUPAC. Compendium of Chemical Terminology (Blackwell Scientific, Oxford, 1997).

    Google Scholar 

  12. H. Gould, J. Tobochnik, and W. Christian, An Introduction to Computer Simulation Methods (Pearson, Addison Valley, 2006).

  13. J. E. Lennard-Jones, Proc. R. Soc. London, Ser. A 106, 463 (1924).

    Google Scholar 

  14. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989).

    Google Scholar 

  15. D. W. Siderius and L. D. Gelb, J. Chem. Phys. 135, 084703 (2011).

    Article  Google Scholar 

  16. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  CAS  Google Scholar 

  17. H. J. C. Berendsen, H. J. C. Postma, H. J. C. van Gunsteren, et al., J. Chem. Phys. 81, 3684 (1984).

    Article  CAS  Google Scholar 

  18. H. C. Andersen, J. Chem. Phys. 72 (4), 2384 (1980).

    Article  CAS  Google Scholar 

  19. D. Frenkel and B. Smith, Understanding Molecular Simulation: from Algorithms to Applications (Academic Press, Cambridge, MA, 2006).

    Google Scholar 

  20. H. A. Lorentz, Ann. Phys. 248 (1), 127 (1881).

    Article  Google Scholar 

  21. D. Berthelot, C. R. Hebd. Seances Acad. Sci. 126, 1703 (1898).

    Google Scholar 

  22. E. G. Nikonov and M. Popovičova, Molecular dynamic simulation of wet water vapour transport in porous medium. https://arxiv.org/abs/1901.07328.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Nikonov.

Additional information

Translated by S. Semenova

LIT JINR No. 05-6-1118-2014/2019, protocol no. 4596-6-17/19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonov, E.G., Popovičová, M. Mathematical Study of the Water-Vapor Permeability of the Surface Layer of a Homogeneous Porous Material. J. Surf. Investig. 14, 298–305 (2020). https://doi.org/10.1134/S1027451020020305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020020305

Keywords:

Navigation