Skip to main content
Log in

Long-Term Development Prospects of Russia’s Wind Energy in the Conditions of Expected Climate Changes

  • ENERGY SAVING, NEW AND RENEWABLE ENERGY SOURCES
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The climatic effect on the operation of wind power plants in Russia is analyzed. Based on the global experience of wind farms’ operation, a quantitative assessment of the sensitivity of electric power generation by modern wind turbines to wind speed variation is carried out. Using the ensemble approach, predictive estimates of changes in the wind fields in Russia are obtained for the 21st century using the results of general atmospheric circulation models participating in the international project CMIP5 (Coupled Multimodel Intercomparison Project Phase 5). The validity of the findings is ensured by the validation procedure, including a comparison of different versions of the multimodel ensemble with data reanalysis. The predictive estimate obtained for the climatic scenario developed at the National Research University Moscow Power Engineering Institute (NRU MPEI) is compared with generally accepted climatic scenarios based on the use of so-called greenhouse gas representative concentration pathways. It is shown that the choice of the scenario has a significant impact on the forecast results. However, the data of the calculations distinguish several features of the wind regime in the 21st century, which are almost independent of the selected scenario or ensemble composition and, apparently, can be considered reliable. In particular, it is found that there is a possibility of some decrease in average wind speeds across Russia during the 21st century. However, in Primorskiy Kray, the expected climate change will lead to the formation of a zone with a steady increase in its speed. Changes in the technical wind potential in the regions of the country where the construction of wind turbines is planned will amount to from –15 to –20% for the subarctic regions and from +5 to +10% for Primorskiy Kray by the end of the 21st century. It follows from the calculations that the currently observed climate warming, in all likelihood, does not pose a serious threat to the development of wind energy in Russia. The modern and planned location of wind farms even makes it possible to expect some growth in their production rate in the first half of the 21st century. At the same time, the prospect of long-term changes in the wind regime should certainly be taken into account when selecting the wind farm location and predesign analysis as part of the measures aimed at adapting to climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Reanalysis is the reconstruction of global fields of meteorological quantities by hydrodynamic modeling using observational data.

  2. https://github.com/ekatef/CMIP5-ArAvr

REFERENCES

  1. M. M. Borisenko, E. O. Gobarova, and E. L. Zhil’tsova, “Assessment of wind energy resources on the territory of Russia,” Tr. Gl. Geofiz. Obs. Im. A. I. Voeikova 557, 53–66 (2008).

    Google Scholar 

  2. G. Ermolenko, I. Gordeev, M. Ryzhenkov, A. Nikomarova, and N. Bogoroditskaya, “Development of grid wind farms in Russia based on the example of a pilot project of the VES Mirny wind farm in the Yeisk district of Krasnodar Kray,” Vetrovaya Energ. 17, 20–30 (2014).

    Google Scholar 

  3. Global and Russian Energy Outlook 2016, Ed. by A. A. Makarov, L. M. Grigor’ev, and T. A. Mitrovaya (Inst. Energ. Issled. Ross. Akad. Nauk — Anal. Tsentr pri Pravitel’stve RF, Moscow, 2016). http://ac.gov.ru/ files/publication/a/10585.pdf

  4. V. V. Elistratov and A. V. Vinogradova (Chernova), “Simulation of WPP/HPP power system operating modes in decentralized power supply system,” Al’tern. Energ. Ekol., No. 9–10, 12–24 (2016). https://doi.org/10.15518/isjaee.2016.09-10.012-024

  5. N. M. Kuznetsov, O. E. Konovalova, and V. V. Pobedonostseva, “Energy efficiency management in the regions of the Arctic zone of the Russian Federation,” Tr. Kol’skogo Nauchn. Tsentra Ross. Akad. Nauk 8 (17), 20–34 (2018).

    Google Scholar 

  6. O. S. Popel’, S. V. Kiseleva, M. O. Morgunova, T. S. Gabderakhmanova, and A. B. Tarasenko, “Use of renewable energy sources for energy supply to consumers in the Arctic zone of the Russian Federation,” Arkt.: Ekol. Ekon. 1 (17), 64–69 (2015).

    Google Scholar 

  7. D. A. Gill, L. A. Ritchie, J. S. Picou, J. Langhinrichsen-Rohling, M. A. Long, and J. W. Shenesey, “The Exxon and BP oil spills: A comparison of psychosocial impacts,” Nat. Hazards 74, 1911–1932 (2014). https://doi.org/10.1007/s11069-014-1280-7

    Article  Google Scholar 

  8. F. Souba and P. B. Mendelson, “Wind Group: Lessons learned beyond wind integration for remote Alaska,” Electr. J. 31 (6), 40–47 (2018). https://doi.org/10.1016/j.tej.2018.06.008

    Article  Google Scholar 

  9. Atlas of Renewable Energy Resources (Ross. Khim.-Tekhnol. Univ Im. D. I. Mendeleeva, Moscow, 2015) [in Russian].

  10. B. V. Ermolenko, G. V. Ermolenko, Y. A. Fetisova, and L. N. Proskuryakova, “Wind and solar PV technical potentials: Measurement methodology and assessments for Russia,” Energy 137, 1001–1012 (2017). https://doi.org/10.1016/j.energy.2017.02.050

    Article  Google Scholar 

  11. E. N. Sosnina, A. V. Shalukho, I. A. Lipuzhin, A. Yu. Kechkin, and A. A. Voroshilov, “Improving the efficiency of decentralized power supply systems,” Tr. NGTU 3 (122), 81–91 (2018).

    Google Scholar 

  12. S. V. Ganaga, Yu. I. Kudryashov, V. G. Nikolaev, V. V. Nikolaev, and E. E. Son, “On the development of the techniques of wind power stations parameters modeling in Russia and CIS countries,” Izv. Ross. Akad. Nauk Energ. 4, 56–76 (2017).

    Google Scholar 

  13. S. Zedda, “Portfolio strategies for renewable energy share maximization,” in Proc. 1st Int. Conf. on Energy Transition in the Mediterranean Area (SyNERGY MED), Cagliari, Italy, May 28–30,2019 (IEEE, Piscataway, NJ, 2019). https://doi.org/10.1109/SyNERGY-MED.2019.8764128

  14. I. Staffell and S. Pfenninger, “Using bias-corrected reanalysis to simulate current and future wind power output,” Energy 114, 1224–1239 (2016). https://doi.org/10.1016/j.energy.2016.08.068

    Article  Google Scholar 

  15. A. Molod, L. Takacs, M. Suarez, and J. Bacmeister, “Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2,” Geosci. Model Dev. 8, 1339–1356 (2015). https://doi.org/10.5194/gmd-8-1339-2015

    Article  Google Scholar 

  16. https://www.renewables.ninja. Accessed July 25, 2019.

  17. J. Weber, F. Gotzens, and D. Witthaut, “Impact of strong climate change on the statistics of wind power generation in Europe,” Energy Procedia 153, 22–28 (2018). https://doi.org/10.1016/j.egypro.2018.10.004

    Article  Google Scholar 

  18. E. Rusu, “A 30-year projection of the future wind energy resources in the coastal environment of the Black Sea,” Renewable Energy 139, 228–234 (2019). https://doi.org/10.1016/j.renene.2019.02.082

    Article  Google Scholar 

  19. D. Carvalho, A. Rocha, M. Gómez-Gesteira, and C. Silva Santos, “Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections,” Renewable Energy 101, 29–40 (2017). https://doi.org/10.1016/j.renene.2016.08.036

    Article  Google Scholar 

  20. C. Baumberger, R. Knutti, and G. Hirsch Hadorn, “Building confidence in climate model projections: An analysis of inferences from fit,” Wiley Interdiscip. Rev.: Climate Change 8, e454 (2017). https://doi.org/10.1002/wcc.454

    Article  Google Scholar 

  21. Q. Tian, G. Huang, K. Hu, and D. Niyogi, “Observed and global climate model based changes in wind power potential over the northern hemisphere during 1979–2016,” Energy 167, 1224–1235 (2019). https://doi.org/10.1016/j.energy.2018.11.027

    Article  Google Scholar 

  22. D. van Vuuren, J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G. Hurtt, T. Kram, V. Krey, J. Lamarque, T. Masui, M. Meinshausen, N. Nakicenovic, S. Smith, and S. Rose, “The representative concentration pathways: An overview,” Climatic Change 109, 5–31 (2011). https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  23. C. P. Morice, J. J. Kennedy, N. A. Rayner, and P. D. Jones, “Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set,” J. Geophys. Res.: Atmos. 117, D08101 (2012). https://doi.org/10.1029/2011JD017187

    Article  Google Scholar 

  24. V. V. Klimenko, A. V. Klimenko, and A. G. Tereshin, “Test of developing long-term forecasts of world energy impact on the Earth’s atmosphere,” Izv. Atmos. Oceanic Phys. 51, 138–147 (2015).

    Article  Google Scholar 

  25. V. A. Govorkova, V. M. Kattsov, V. P. Meleshko, T. V. Pavlova, and I. M. Shkol’nik, “The climate of Russia in the XXI century. Part 2. Assessment of the suitability of the general atmosphere and ocean circulation models CMIP3 for calculating future climate changes in Russia,” Meteorol. Gidrol., No. 8, 47–57 (2008).

  26. A. V. Kislov, V. M. Evstigneev, S. M. Malkhazova, N. N. Sokolikhina, G. V. Surkova, P. A. Toropov, A. V. Chernyshev, and A. N. Chumachenko, Forecast of Climate Resources of the East-European Plain Under Condition of Global Warming in the XXI Century (MAKS, Moscow, 2008) [in Russian].

    Google Scholar 

  27. Evaluation Report on Climate Change and Its Consequences in the Russian Federation, Ed. by V. M. Kattsova and S. M. Semenova, (Rosgidromet, Moscow, 2008) [in Russian].

    Google Scholar 

  28. I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, V. Ch. Khon, M. G. Akperov, M. M. Arzhanov, A. A. Karpenko, V. A. Tikhonov, A. V. Chernokul’skii, and E. V. Sigaeva, “Climate changes and their assessment based on the IAP RAS global model simulations,” Dokl. Earth Sci. 402, 591–595 (2005).

    Google Scholar 

  29. V. P. Meleshko and V. A. Govorkova, “Performance of CMIP3 and CMIP5 models in simulation of current climate,” Tr. Gl. Geofiz. Obs. im. A. I. Voeikova, No. 568, 26–50 (2013).

    Google Scholar 

  30. I. M. Shkol’nik, V. P. Meleshko, V. V. Stadnik, E. I. Khlebnikova, E. M. Akent’eva, E. L. Genikhovich, and A. A. Kiselev, “Impact of climate change on energy production and consumption in Russia,” Tr. Gl. Geofiz. Obs. im. A. I. Voeikova, No. 573, 92–222 (2014).

    Google Scholar 

  31. G. V. Surkova and A. A. Krylov, “Changes in the average and extreme wind speeds in the Arctic during the late XXI century,” Arkt. Antarkt. 3, 26–36 (2018).

    Google Scholar 

  32. D. Bi, M. Dix, S. Marsland, S. O’Farrell, H. Rashid, P. Uotila, A. Hirst, E. Kowalczyk, M. Golebiewski, A. Sullivan, H. Yan, N. Hannah, C. Franklin, Z. Sun, P. Vohralik, I. Watterson, X. Zhou, R. Fiedler, M. Collier, Y. Ma, J. Noonan, L. Stevens, P. Uhe, H. Zhu, S. Griffies, R. Hill, C. Harris, and K. Puri, “The ACCE-SS coupled model: Description, control climate and evaluation,” Aust. Meteorol. Mag. Oceanogr. J. 63, 41–64 (2013). https://doi.org/10.22499/2.6301.004

    Article  Google Scholar 

  33. D. Ji, L. Wang, J. Feng, Q. Wu, H. Cheng, Q. Zhang, J. Yang, W. Dong, Y. Dai, D. Gong, R.-H. Zhang, X. Wang, J. Liu, J. C. Moore, D. Chen, and M. Zhou, “Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1,” Geosci. Model Dev. 7, 2039–2064 (2014). https://doi.org/10.5194/gmd-7-2039-2014

    Article  Google Scholar 

  34. V. K. Arora and G. J. Boer, “Terrestrial ecosystems response to future changes in climate and atmospheric CO2 concentration,” Biogeosciences 11, 4157–4171 (2014). https://doi.org/10.5194/bg-11-4157-2014

    Article  Google Scholar 

  35. P. G. Fogli and D. Iovino, CMCC-CCESM: Toward the New CMCC Earth System Model, CMCC Research Paper No. 248 (SSRN, 2015). https://doi.org/10.2139/ssrn.2603176

  36. A. Voldoire, E. Sanchez-Gomez, D. Salas y Mélia, B. Decharme, C. Cassou, S. Sénési, S. Valcke, I. Beau, A. Alias, M. Chevallier, M. Déqué, J. Deshayes, H. Douville, E. Fernandez, G. Madec, E. Maisonnave, M. P. Moine, S. Planton, D. Saint-Martin, S. Szopa, S. Tyteca, R. Alkama, S. Belamari, A. Braun, L. Coquart, and F. Chauvin, “The CNRM-CM5.1 global climate model: Description and basic evaluation,” Climate Dyn. 40, 2091–2121 (2013). https://doi.org/10.1007/s00382-011-1259-y

    Article  Google Scholar 

  37. H. B. Gordon, S. P. O’Farrell, M. A. Collier, M. R. Dix, L. D. Rotstayn, E. A. Kowalczyk, A. C. Hirst, and I. G. Watterson, The CSIRO Mk3.5 Climate Model, CAWCR Technical Report No. 021. (CSIRO Mar. and Atmos. Res., 2010).

  38. S. M. Griffies, M. Winton, L. J. Donner, L. W. Horowitz, S. M. Downes, R. Farneti, A. Gnanadesikan, W. J. Hurlin, H. C. Lee, Z. Liang, J. B. Palter, B. L. Samuels, A. T. Wittenberg, B. L. Wyman, J. Yin, and N. Zadeh, “The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations,” J. Clim. 24, 3520–3544 (2011). https://doi.org/10.1175/2011JCLI3964.1

    Article  Google Scholar 

  39. J. P. Dunne, J. G. John, S. Shevliakova, R. J. Stouffer, J. P. Krasting, S. L. Malyshev, P. C. Milly, L. T. Sentman, A. J. Adcroft, W. Cooke, K. A. Dunne, S. M. Griffies, R. W. Hallberg, M. J. Harrison, H. Levy, A. T. Wittenberg, P. J. Phillips, and N. Zadeh, “GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: Carbon system formulation and baseline simulation characteristics,” J. Clim. 26, 2247–2267 (2013). https://doi.org/10.1175/JCLI-D-12-00150.s1

    Article  Google Scholar 

  40. G. M. Martin, N. Bellouin, W. J. Collins, I. D. Culverwell, P. R. Halloran, S. C. Hardiman, T. J. Hinton, C. D. Jones, R. E. McDonald, A. J. McLaren, F. M. O’Connor, M. J. Roberts, J. M. Rodriguez, S. Woodward, M. J. Best, M. E. Brooks, A. R. Brown, N. Butchart, C. Dearden, S. H. Derbyshire, I. Dharssi, M. Doutriaux-Boucher, J. M. Edwards, P. D. Falloon, N. Gedney, L. J. Gray, H. T. Hewitt, M. Hobson, M. R. Huddleston, J. Hughes, S. Ineson, W. J. Ingram, P. M. James, T. C. Johns, C. E. Johnson, A. Jones, C. P. Jones, M. M. Joshi, A. B. Keen, S. Liddicoat, A. P. Lock, A. V. Maidens, J. C. Manners, S. F. Milton, J. G. Rae, J. K. Ridley, A. Sellar, C. A. Senior, I. J. Totterdell, A. Verhoef, P. L. Vidale, and A. Wiltshire, “The HadGEM2 family of Met Office Unified Model climate configurations,” Geosci. Model Dev. 4, 723–757 (2011). https://doi.org/10.5194/gmd-4-723-2011

    Article  Google Scholar 

  41. J. L. Dufresne, M. A. Foujols, S. Denvil, A. Caubel, O. Marti, O. Aumont, Y. Balkanski, S. Bekki, H. Bellenger, R. Benshila, S. Bony, L. Bopp, P. Braconnot, P. Brockmann, P. Cadule, F. Cheruy, F. Codron, A. Cozic, D. Cugnet, N. de Noblet, J. P. Duvel, C. Ethé, L. Fairhead, T. Fichefet, S. Flavoni, P. Friedlingstein, J. Y. Grandpeix, L. Guez, E. Guilyardi, D. Hauglustaine, F. Hourdin, A. Idelkadi, J. Ghattas, S. Joussaume, M. Kageyama, G. Krinner, S. Labetoulle, A. Lahellec, M. P. Lefebvre, F. Lefevre, C. Levy, Z. X. Li, J. Lloyd, F. Lott, G. Madec, M. Mancip, M. Marchand, S. Masson, Y. Meurdesoif, J. Mignot, I. Musat, S. Parouty, J. Polcher, C. Rio, M. Schulz, D. Swingedouw, S. Szopa, C. Talandier, P. Terray, N. Viovy, and N. Vuichard, “Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5,” Clim. Dyn. 40, 2123–2165 (2013). https://doi.org/10.1007/s00382-012-1636-1

    Article  Google Scholar 

  42. M. Watanabe, T. Suzuki, R. O’Ishi, Y. Komuro, S. Watanabe, S. Emori, T. Takemura, M. Chikira, T. Ogura, M. Sekiguchi, K. Takata, D. Yamazaki, T. Yokohata, T. Nozawa, H. Hasumi, H. Tatebe, and M. Kimoto, “Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity,” J. Clim. 23, 6312–6335 (2010). https://doi.org/10.1175/2010JCLI3679.1

    Article  Google Scholar 

  43. S. Watanabe, T. Hajima, K. Sudo, T. Nagashima, T. Takemura, H. Okajima, T. Nozawa, H. Kawase, M. Abe, T. Yokohata, T. Ise, H. Sato, E. Kato, K. Takata, S. Emori, and M. Kawamiya, “MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments,” Geosci. Model Dev. 4, 845–872 (2011). https://doi.org/10.5194/gmd-4-845-2011

    Article  Google Scholar 

  44. M. A. Giorgetta, J. Jungclaus, C. H. Reick, S. Legutke, J. Bader, M. Böttinger, V. Brovkin, T. Crueger, M. Esch, K. Fieg, K. Glushak, V. Gayler, H. Haak, H. Hollweg, T. Ilyina, S. Kinne, L. Kornblueh, D. Matei, T. Mauritsen, U. Mikolajewicz, W. Mueller, D. Notz, F. Pithan, T. Raddatz, S. Rast, R. Redler, E. Roeckner, H. Schmidt, R. Schnur, J. Segschneider, K. D. Six, M. Stockhause, C. Timmreck, J. Wegner, H. Widmann, K. Wieners, M. Claussen, J. Marotzke, and B. Stevens, “Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5,” J. Adv. Modeling Earth Syst. 5, 572–597 (2013). https://doi.org/10.1002/jame.20038

    Article  Google Scholar 

  45. S. Yukimoto, Y. Adachi, M. Hosaka, T. Sakami, H. Yoshimura, M. Hirabara, T. Y. Tanaka, E. Shindo, H. Tsujino, M. Deushi, R. Mizuta, S. Yabu, A. Obata, H. Nakano, T. Koshiro, T. Ose, and A. Kitoh, “A new global climate model of the Meteorological Research Institute: MRI–CGCM3-model description and basic performance,” J. Meteorol. Soc. Jpn. 90A, 23–64 (2012). https://doi.org/10.2151/jmsj.2012-A02

    Article  Google Scholar 

  46. X. Xiao Ge, W. Tong Wen, and Z. Jie, “Introduction of CMIP5 experiments carried out with the Climate System Models of Beijing Climate Center,” Adv. Clim. Change Res. 4, 41–49 (2013). https://doi.org/10.3724/sp.j.1248.2013.041

    Article  Google Scholar 

  47. E. M. Volodin, N. A. Dianskii, and A. V. Gusev, “Simulating present-day climate with the INMCM4.4 coupled model of the atmospheric and oceanic general circulations,” Izv. Atmos. Oceanic Phys. 46, 414–431 (2010).

    Article  Google Scholar 

  48. V. V. Klimenko and E. V. Fedotova, “Development of multi-model ensemble climate estimates using open-source environment,” IOP Conf. Ser.: Earth Environ. Sci. 211, 012084 (2018). https://doi.org/10.1088/1755-1315/211/1/012084

    Article  Google Scholar 

  49. G. P. Compo, J. S. Whitaker, P. D. Sardeshmukh, N. Matsui, R. J. Allan, X. Yin, B. E. Gleason, R. S. Vose, G. Rutledge, P. Bessemoulin, S. Bronnimann, M. Brunet, R. I. Crouthamel, A. N. Grant, P. Y. Groisman, P. D. Jones, M. C. Kruk, A. C. Kruger, G. J. Marshall, M. Maugeri, H. Y. Mok, Ø. Nordli, T. F. Ross, R. M. Trigo, X. L. Wang, S. D. Woodruff, and S. J. Worley, “The Twentieth Century Reanalysis Project,” Q. J. R. Meteorol. Soc. 137, 1–28 (2011). https://doi.org/arXiv 1011.1669v3

  50. O. N. Bulygina, N. N. Korshunova, and V. N. Razuvaev, “Changes in the wind regime over Russia in the last decades,” Tr. Gl. Geofiz. Obs. im. A. I. Voeikova, 568, 156–172 (2013).

    Google Scholar 

  51. Second Assessment Report on Climate Change and its Consequences in the Russian Federation, Ed. by V. M. Kattsov and S. M. Semenov (Rosgidromet, Moscow, 2014) [in Russian].

    Google Scholar 

  52. V. Klimenko, A. Tereshin, and O. Mikushina, “Increase of energy potential of Russian forest resources due to climate change and CO2 fertilization,” E3S Web Conf. 103, 02005 (2019). https://doi.org/10.1051/e3sconf/201910302005

    Article  Google Scholar 

  53. I. Tobin, W. Greuell, S. Jerez, F. Ludwig, R. Vautard, M. T. H. van Vliet, and F.-M. Breon, “Vulnerabilities and resilience of European power generation to 1.5°C, 2°C and 3°C warming,” Environ. Res. Lett. 13, 044024 (2018). https://doi.org/10.1088/1748-9326/aab211

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the German Climate Computing Center and the CMIP5 teams listed in Table 2 for the granted assess to the project results. The authors also highly appreciate efforts of the Renewables.ninja developers Dr. S. Pfenninger and Dr. I. Staffell on sharing their research results in an open and transparent way.

Funding

This work was supported by the Russian Science Foundation (project no. 18-79-10255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Klimenko.

Additional information

Translated by A. Kolemesin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, V.V., Fedotova, E.V. Long-Term Development Prospects of Russia’s Wind Energy in the Conditions of Expected Climate Changes. Therm. Eng. 67, 331–342 (2020). https://doi.org/10.1134/S0040601520060051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601520060051

Keywords:

Navigation