Skip to main content
Log in

Formation of a Gradient Structure in a Material by Twist Extrusion

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Hexagonal samples with an initial coarse-grained structure (CG) in the near-axis zone and a gradient ultrafine-grained (UFG) structure at the periphery are formed by twist extrusion (TE) of commercial-purity copper through a hexagonal twist die with a small twist-line slope. This hybrid structure of the samples provides conditions for a large uniform deformation before necking (due to the CG core) and a high yield strength (due to the gradient UFG periphery). The hybrid CG–UFG structure can be formed due to the threshold nature of metal grain refinement during cyclic deformation. A simple relation is derived for estimating the CG core diameter of the sample. The structure and the texture of the samples are investigated by X‑ray diffraction and optical microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Suresh, “Graded materials for resistance to contact deformation and damage,” Science 292 (5526), 2447–2451 (2001).

    Article  CAS  Google Scholar 

  2. D. A. Hughes and N. Hansen, “Graded nano-structures produced by sliding and exhibiting universal behavior,” Phys. Rev. Lett. 87 (13), 135503–135511 (2001).

    Article  CAS  Google Scholar 

  3. T. H. Fang, W. L. Li, N. R. Tao, et al., “Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper,” Science 331 (6024), 1587–1590 (2011).

    Article  CAS  Google Scholar 

  4. K. Lu, “Making strong nanomaterials ductile with gradients,” Science 345 (6203), 1455–1456 (2014).

    Article  CAS  Google Scholar 

  5. Y. J. Wei, Y. Q. Li, L. C. Zhu, et al., “Evading the strength ductility trade-off dilemma in steel through gradient hierarchical nanotwins,” Nat. Commun. 5 (3580) (2014).

    Article  CAS  Google Scholar 

  6. X. L. Wu, P. Jiang, L. Chen, et al., “Synergetic strengthening by gradient structure,” Mater. Res. Lett. 2 (4), 185–191 (2014).

    Article  CAS  Google Scholar 

  7. X. L. Wu, P. Jiang, L. Chen, et al., “Extraordinary strain hardening by gradient structure,” Proc. Natl. Acad. Sci. USA. 111 (20), 7197–7201 (2014).

    Article  CAS  Google Scholar 

  8. M. X. Yang, Y. Pan, F. P. Yuan, et al., “Back stress strengthening and strain hardening in gradient structure,” Mater. Res. Lett. 4 (3), 141–151 (2016).

    Article  CAS  Google Scholar 

  9. X. Bian, F. Yuan, Y. Zhu, and X. Wu, “Gradient structure produces superior dynamic shear properties,” Mater. Res. Lett. 5 (7), 501–507 (2017).

    Article  CAS  Google Scholar 

  10. J. J. Li, G. J. Weng, S. H. Chen, and X. L. Wu, “On strain hardening mechanism in gradient nanostructures,” Intern. J. Plasticity. 88, 89–107 (2017).

    Article  CAS  Google Scholar 

  11. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later,” JOM 68, 1216–1226 (2016).

    Article  CAS  Google Scholar 

  12. Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: a wealth of challenging science,” Acta Mater. 61, 782–817 (2013).

  13. K. Lu and J. Lu, “Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment,” Mater. Sci. Eng. A. 375–377, 38–45 (2004).

  14. Z. Yin, X. Yang, X. Ma, et al., “Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment,” Mater. Design. 105, 89–95 (2016).

    Article  CAS  Google Scholar 

  15. V. Q. Vu, Y. Beygelzimer, L. S. Toth, J.-J. Fundenberger, R. Kulagin, and C. Chen, “The plastic flow machining: a new SPD process for producing metal sheets with gradient structures,” Mater. Characterization 138, 208–214 (2018).

    Article  CAS  Google Scholar 

  16. Y. L. Wang, A. Molotnikov, M. Diez, R. Lapovok, H. E. Kim, J. T. Wang, and Y. Estrin, “Gradient structure produced by three roll planetary milling: numerical simulation and microstructural observations,” Mater. Sci. Eng. A. 639, 165–172 (2015).

    Article  CAS  Google Scholar 

  17. M. Diez, H. J. Kim, V. N. Serebryanyi, S. V. Dobatkin, and Y. Estrin, “Improving the mechanical properties of pure magnesium by three-roll planetary milling,” Mater. Sci. Eng. A 612, 287–292 (2014).

    Article  CAS  Google Scholar 

  18. O. V. Prokof’eva, Y. Y. Beygelzimer, R. Y. Kulagin, Y. Z. Estrin, and V. N. Varyukhin, “Producing of ultrafine grained composites with a large uniform elongation by twist extrusion: mathematical simulation,” Russ. Metall. (Metally), No. 3, 226–230 (2017).

  19. Y. Beygelzimer, R. Kulagin, Y. Estrin, et al., “Twist extrusion as a potent tool for obtaining advanced engineering materials: a review,” Adv. Eng. Mater. (2017).https://doi.org/10.1002/adem.201600873

  20. D. Orlov, Y. Todaka, M. Umemoto, Y. Beygelzimer, Z. Horita, and N. Tsuji, “Plastic flow and grain refinement under simple shear-based severe plastic deformation,” Mater. Sci. Forum 604–605, 171–178 (2009).

  21. D. Orlov, Y. Todaka, M. Umemoto, and N. Tsuji, “Role of strain reversal in grain refinement by severe plastic deformation,” Mater. Sci. Eng. A. 499, 427–433 (2009).

    Article  CAS  Google Scholar 

  22. H. Petryk and S. Stupkiewicz, “A quantitative model of grain refinement and strain hardening during severe plastic deformation,” Mater. Sci. Eng. A 444, 214–219 (2007).

    Article  CAS  Google Scholar 

  23. Y. Beygelzimer, “Grain refinement versus voids accumulation during severe plastic deformation of polycrystals: mathematical simulation,” Mech. Mater. 37, 753–767 (2005).

    Article  Google Scholar 

  24. Y. Beygelzimer, V. Varyukhin, R. Kulagin, and D. Orlov, “Twist extrusion: review,” Fiz. Tekh. Vys. Davlenii. 25 (3–4), 8–37 (2015).

  25. M. I. Latypov, M.-G. Lee, Y. Beygelzimer, R. Kulagin, and H. S. Kim, “Simple shear model of twist extrusion and its deviations,” Met. Mater. Intern. 21 (3), 569–579 (2015).

    Article  CAS  Google Scholar 

  26. Diffraction Analysis of the Microstructure of Materials, Ed. by E. J. Mittemeijer and P. Scardi (Springer, 2004).

    Google Scholar 

  27. R. Guinebretiere, X-ray Diffraction by Polycrystalline Materials (Wiley, 2013).

    Google Scholar 

  28. Ya. D. Vishnyakov, A. A. Babareko, S. A. Vladimirov, and I. V. Egiz, Texture Formation Theory in Metals and Alloys (Nauka, Moscow, 1979).

  29. G. R. Canova, “Theory of torsion texture development,” Acta Metall. 32 (2), 211–226 (1984).

  30. O. V. Prokof’eva, D. V. Prilepo, G. D. Bokuchava, A. Kh. Islamov, A. N. Sapronov, and A. S. Doroshkevich, “Formation of a submicro and coarse-grained structure in metals by twist extrusion,” Fiz. Tekh. Vys. Davlenii. 28 (1), 13–22 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Prokof’eva, Y. Y. Beygelzimer or V. V. Usov.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokof’eva, O.V., Beygelzimer, Y.Y., Usov, V.V. et al. Formation of a Gradient Structure in a Material by Twist Extrusion. Russ. Metall. 2020, 573–578 (2020). https://doi.org/10.1134/S0036029520050110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029520050110

Keywords:

Navigation