Skip to main content
Log in

Liquidus Topology of NaBr–Na2SO4–Na2CO3 and KBr–K2CO3–K2SO4 Systems

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A theoretical analysis is performed of the topology of the liquidus in the NaBr–Na2CO3–Na2SO4, KBr–K2CO3–K2SO4 systems. The coordinates of minimum point on the monovariant curve in the NaBr–Na2CO3–Na2SO4 system are calculated using the Martynova–Susarev approach. An experimental design is devised for studying systems via differential thermal analysis. The melting point and composition of the salt mixture corresponding to the minimum on the monovariant curve of the NaBr–Na2CO3–Na2SO4 system are determined. The absence of nonvariant equilibrium points in the KBr–K2CO3–K2SO4 system is proved. The NaBr–Na2CO3–Na2SO4, KBr–K2CO3–K2SO4 systems have yet to be studied. They are of interest, since their components have a number of valuable properties, e.g., thermal stability and the possibility of using them as solvents for some other salts over a wide range of temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Yu. K. Delimarskii and L. P. Barchuk, Applied Chemistry of Ionic Melts (Naukova Dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  2. Yu. K. Delimarskii, Ion Melts in Modern Technology (Metallurgiya, Moscow, 1981) [in Russian].

    Google Scholar 

  3. L. I. Cherneeva, E. K. Rodionova, N. M. Martynova, et al., Reviews on the Thermophysical Properties of Substances (Inst. Vys. Temp. AN SSSR, Moscow, 1980), No. 3, p. 56 [in Russian].

  4. N. A. Vasina, E. S. Gryzlova, and S. G. Shaposhnikova, Thermophysical Properties of Multicomponent Salt Systems (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  5. S. A. Zaretskii, V. N. Suchkov, and P. B. Zhivotinskii, Electrochemical Technology of Inorganic Substances and Chemical Power Sources, The Manual (Vyssh. Shkola, Moscow, 1980), p. 211 [in Russian].

    Google Scholar 

  6. N. V. Korovin, New Chemical Power Sources (Energiya, Moscow, 1978) [in Russian].

    Google Scholar 

  7. N. V. Korovin, Electrochemical Power Engineering (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  8. Chemical Power Sources, The Handbook, Ed. by N. V. Korovin and A. M. Skundin (MEI, Moscow, 2003) [in Russian].

    Google Scholar 

  9. I. K. Garkushin, E. O. Ignat’eva, E. M. Bekhtereva, and V. G. Bamburov, Physico-Chemical Interaction in Systems of Halides, Chromates, Molybdates, and Tungstates of Lithium, Sodium, and Potassium (RIO UrO RAN, Yekaterinburg, 2013) [in Russian].

    Google Scholar 

  10. S. D. Gromakov, On Some Laws of Equilibrium Systems (KGU, Kazan, 1961) [in Russian].

    Google Scholar 

  11. V. M. Vozdvizhenskii, General Patterns in the Structure of Phase Diagrams of Metallic Systems (Nauka, Moscow, 1973), p. 103 [in Russian].

    Google Scholar 

  12. G. I. Zamaldinova, I. K. Garkushin, and S. N. Parfenova, Russ. J. Inorg. Chem. 57, 888 (2012).

    Article  CAS  Google Scholar 

  13. A. G. Khachaturyan, Theory of Phase Transformations and the Structure of Solid Solutions (Nauka, Moscow, 1974), p. 328 [in Russian].

    Google Scholar 

  14. A. M. Zakharov, State Diagrams of Binary and Ternary Systems (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

  15. L. Mindel’korn, Nonstoichiometric Compounds (Khimiya, Moscow, 1971) [in Russian].

    Google Scholar 

  16. E. Yu. Moshchenskaya, Registration State Certificate for Computer Program No. 2006612377 (2006).

  17. V. P. Egunov, Introduction to Thermal Analysis (SamVen, Samara, 1996) [in Russian].

    Google Scholar 

  18. Thermal Constants of Substances, The Reference Book, Ed. by V. P. Glushko (VINITI, Moscow, 1981), No. 10, Part 2 [in Russian].

  19. Salt Fusibility Diagrams, Part 3, Ed. by V. I. Posypaiko and E. A. Alekseeva (Metallurgiya, Moscow, 1977) [in Russian].

    Google Scholar 

  20. N. K. Voskresenskaya, N. N. Evseeva, S. I. Berul’, and I. P. Vereshchetina, Liquid–Solid Equilibria in Anhydrous Inorganic Salt Systems: A Handbook (Akad. Nauk SSSR, Moscow, 1961), Vol. 1 [in Russian].

    Google Scholar 

  21. Salt Fusibility Diagrams. Ternary Systems, Ed. by V. I. Posypaiko and E. A. Alekseeva (Khimiya, Moscow, 1977), p. 328 [in Russian].

  22. ACerS-NIST. Phase Equilibria Diagrams. CD-ROM Database. Version 3.1.0. American Ceramic Society. National Institute of Standards and Technology.

Download references

Funding

This work was performed as part of a State Task for Samara State Technical University, 2020 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Syrova.

Additional information

Translated by A. Bannov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syrova, V.I., Garkushin, I.K., Frolov, E.I. et al. Liquidus Topology of NaBr–Na2SO4–Na2CO3 and KBr–K2CO3–K2SO4 Systems. Russ. J. Phys. Chem. 94, 1125–1129 (2020). https://doi.org/10.1134/S0036024420060278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420060278

Keywords:

Navigation