Skip to main content
Log in

Characteristic Features of the Gas Chromatographic Separation of Tautomers of Ethyl Acetoacetate

  • PHYSICAL CHEMISTRY OF SEPARATION PROCESSES. CHROMATOGRAPHY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Characteristic features of the gas chromatographic separation of the keto and enol tautomeric forms of ethyl acetoacetate on a capillary column with a BPX-1 standard nonpolar polydimethylsiloxane stationary phase are considered. It is confirmed that the chromatograms of a mixture of tautomers have a specific profile, i.e., a plateau between the peaks of the tautomers, which corresponds to the reversible keto \( \rightleftarrows \) enol transformation during separation. It is shown that the enol and keto forms of ethyl acetoacetate have different coefficients of the temperature dependence of the gas chromatographic retention indices (0.19 ± 0.03 and 0.02 ± 0.02, respectively). It is found there is no dependence of the relative peak areas of the tautomers on the nature of the solvent (polar ethyl alcohol and nonpolar hexane) at different temperatures; i.e., such ratios predominantly reflect the position of the keto \( \rightleftarrows \) enol equilibrium in the vapor phase of the injector of the chromatograph. It is concluded that this results in similar values of the thermodynamic parameters (standard enthalpy and entropy) of the tautomeric equilibrium determined upon the dosing of samples in different solvents. Possible distortions of the results due to the effects of discriminating between the compositions of the samples injected into capillary columns with gas flow splitting are discussed. An impurity in a sample of ethyl acetoacetate after long-term storage is identified as ethyl 2-hydroxy-3-oxobutanoate, the product of oxidation by dissolved atmospheric oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. I. Minkin, L. P. Olekhnovich, and Yu. A. Zhdanov, Molecular Design of Tautomeric Compounds (Kluwer, Dordrecht, Boston, Tokio, 1958). https://doi.org/10.1007/978-94-009-1429-2

    Google Scholar 

  2. J. N. Spencer, E. S. Holmboe, M. R. Kirshembaum, D. W. Firth, and P. B. Pinto, Can. J. Chem. 68, 1178 (1982).

    Article  Google Scholar 

  3. P. Umnahanant and J. S. Chickos, J. Chem. Eng. Data 50, 1720 (2005). https://doi.org/10.1021/je050179z

    Article  CAS  Google Scholar 

  4. D. Antic, Thermo Scientific Application Note No. AN52327 (2017).

  5. M. T. Rogers and J. L. Burdett, Can. J. Chem. 43, 1516 (1965).

    Article  CAS  Google Scholar 

  6. D. Tiess and Z. Wiess, Willhelm-Pieck-Univ. Rostock Math. Naturwiss. Reiche 33, 6 (1984).

    CAS  Google Scholar 

  7. T. L. Peppard, J. Agric. Food Chem. 40, 257 (1992). https://doi.org/10.1021/jf00014a018

    Article  CAS  Google Scholar 

  8. E. Tudor, J. Chromatogr., A 779, 287 (1997). https://doi.org/10.1016/S0021-9673(97)00453-6

  9. E. Tudor, D. Moldovan, and N. Zarna, Rev. Roum. Chim. 44, 665 (1999).

    CAS  Google Scholar 

  10. M. J. Jordan, K. L. Goodner, and P. E. Shau, J. Agric. Food Chem. 50, 1523 (2002). https://doi.org/10.1021/jf011077p

    Article  CAS  PubMed  Google Scholar 

  11. M. Adamova, A. Orinak, and L. Halas, J. Chromatogr., A 1087, 131 (2005). https://doi.org/10.1016/j.chroma.2005.01.003

  12. J. A. Pino, J. Mesa, Y. Munos, M. P. Marti, and R. Marbot, J. Agric. Food Chem. 53, 2213 (2005).https://doi.org/10.1021/jf0402633

    Article  CAS  PubMed  Google Scholar 

  13. F. Bianchi, M. Careri, A. Mangia, and M. Musci, J. Sep. Sci. 39, 563 (2007).

    Article  Google Scholar 

  14. The NIST 17 Mass Spectral Library (NIST17/2017/EPA/NIH), Software/Data Version (NIST17), NIST Standard Reference Database, Number 69 (Natl. Inst. Standards Technol., Gaithersburg, MD, 2017). http://webbook.nist.gov. Accessed October 2019.

  15. M. Masur, H. F. Grutzmascher, H. Munster, and H. Budzikieicz, Org. Mass Spectrom. 22, 493 (1987).

    Article  CAS  Google Scholar 

  16. P. E. Allegretti, M. M. Schiavoni, H. E. di Loreto, and J. J. P. Furlong, and C. O. Della Vedova, J. Mol. Struct. 560, 327 (2001).

    Article  CAS  Google Scholar 

  17. S. J. Ruggiero and V. M. Luaces, J. Chem. Educ. 65, 629 (1988). https://doi.org/10.1021/ed065p629

    Article  CAS  Google Scholar 

  18. V. Krishman, Inventions 4, 15 (2019). https://doi.org/10.3390/inventions4010013

    Article  Google Scholar 

  19. T. A. Kornilova, A. I. Ukolov, R. R. Kostikov, and I. G. Zenkevich, Rapid Commun. Mass Spectrom. 27, 461 (2013). https://doi.org/10.1002/rcm.6457

    Article  CAS  PubMed  Google Scholar 

  20. I. G. Zenkevich and N. E. Podol’skii, Anal. Kontrol’ 21 (2), 125 (2017). https://doi.org/10.15825/analitika.2017.21.2.002

    Article  Google Scholar 

  21. P. J. Skrdla, V. Antomucci, and C. Lindemann, J. Chromatogr. Sci. 39, 431 (2001).

    Article  CAS  Google Scholar 

  22. Guide on Gas Chromatography, Ed. by E. Leibnitz and H. G. Struppe (Akad. Verlag, Leipzig, 1966; Mir, Moscow, 1988).

  23. K. Grob and H. P. Neukom, J. Chromatogr., A 236, 297 (1982). https://doi.org/10.1016/S0021-9673(00)84878-5

  24. I. G. Zenkevich and D. A. Olisov, Labor. Pr-vo, No. 2, 92 (2018).

    Google Scholar 

  25. I. G. Zenkevich and E. Leleev, Anal. Kontrol’ 23, 110 (2019). https://doi.org/10.15826/analitika.2019.23.1.012

    Article  Google Scholar 

  26. I. G. Zenkevich and D. A. Olisov, J. Anal. Chem. 74 (Suppl. 1), S32 (2019). https://doi.org/10.1134/S1061934819070190

  27. I. G. Zenkevich and V. V. Ioffe, The Interpretation of Mass-Spectra of Organic Compounds (Khimiya, Leningrad, 1986) [in Russian].

    Google Scholar 

  28. I. G. Zenkevich and V. M. Lukina, Anal. Kontrol’ 23, 410 (2019). https://doi.org/10.15826/analitika.2019.23.3.009

    Article  Google Scholar 

  29. M. C. Hamming and N. G. Foster, Interpretation of Mass Spectra of Organic Compounds (Academic, New York, 1979).

    Google Scholar 

  30. I. G. Zenkevich, M. Moeder, G. Koeller, and S. Schrader, J. Chromatogr., A 1025, 227 (2004). https://doi.org/10.1016/j.chroma.2003.10.106

  31. I. G. Zenkevich and A. I. Ukolov, Russ. J. Gen. Chem. 81, 1818 (2011). https://doi.org/10.1134/1070363211090143

    Article  CAS  Google Scholar 

  32. I. G. Zenkevich and A. I. Ukolov, Mass-Spektrom. 8, 264 (2011). https://doi.org/10.1134/S1061934812130114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Zenkevich.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkevich, I.G., Lukina, V.M. Characteristic Features of the Gas Chromatographic Separation of Tautomers of Ethyl Acetoacetate. Russ. J. Phys. Chem. 94, 1214–1223 (2020). https://doi.org/10.1134/S0036024420060357

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420060357

Keywords:

Navigation