Skip to main content
Log in

A Theoretical Study on the Interaction between Zinc Oxide Cluster (ZnO)3 and Mercury Ion (HgOH+)

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The interaction between zinc oxide cluster (ZnO)3 in both pure and hydrated forms with mercury ion (HgOH+) has been investigated by using density functional theory (DFT) approach at the GGA-PBE/DZVP level of theory and climbing image – nudged elastic band (CI-NEB) method. The Fukui indices were used to predict the reactivity of the atoms. The adsorption energies were calculated. The results show that HgOH+ ion is strongly chemically adsorbed on the clusters. The adsorption process does not involve a transition state. When zinc oxide clusters were deposited on the mesoporous silica material (SBA-15), the adsorption ability of the assembly (ZnO)3/SBA-15 for HgOH+ is increased comparing to the pristine materials. Furthermore, calculation results show that the (ZnO)3/SBA-15 can adsorb HgOH+ even in the presence of a chloride ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla, and D. J. Sutton, Exp. Suppl. 101, 133 (2012). https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  2. M. A. Barakat, Arab. J. Chem. 4, 361 (2011) https://doi.org/10.1016/j.arabjc.2010.07.019

    Article  CAS  Google Scholar 

  3. M. H. Al-Malack and A. A. Basaleh, Desalin. Water Treat. 57, 24519 (2016). https://doi.org/10.1080/19443994.2016.1144536

    Article  CAS  Google Scholar 

  4. M. Karnib, A. Kabbani, H. Holail, and Z. Olama, Energy Proc. 50, 113 (2014). https://doi.org/10.1016/j.egypro.2014.06.014

    Article  CAS  Google Scholar 

  5. E. Erdem, N. Karapinar, and R. Donat, J. Colloid. Interface Sci. 280, 309 (2004). https://doi.org/10.1016/j.jcis.2004.08.028

    Article  CAS  PubMed  Google Scholar 

  6. M. Hong, L. Yu, Y. Wang, J. Zhang, Zh. Chen, L. Dong, Q. Zan, and R. Li, Chem. Eng. J. 359, 363 (2019). https://doi.org/10.1016/j.cej.2018.11.087

    Article  CAS  Google Scholar 

  7. T. Viraraghavan and A. Kapoor, Appl. Clay Sci. 9, 31 (1994). https://doi.org/10.1016/0169-1317(94)90013-2

    Article  CAS  Google Scholar 

  8. Seo-Yun Lee and Hee-Jeong Choi, J. Environ. Manage. 209, 382 (2018). https://doi.org/10.1016/j.jenvman.2017.12.080

    Article  CAS  PubMed  Google Scholar 

  9. S. Senthilkumaar, S. Bharathi, D. Nithyanandhi, and V. Subburam, Bioresour. Technol. 75, 163 (2000). https://doi.org/10.1016/S0960-8524(00)00021-3

    Article  CAS  Google Scholar 

  10. P. Sahu, A. K. Singha Deb, S. K. M. Ali, K. T. Shenoy, and S. Mohan, Mol. Syst. Des. Eng. 3, 917 (2018). https://doi.org/10.1039/C8ME00039E

    Article  CAS  Google Scholar 

  11. S. Debnath and U. C. Ghosh Desalination 273, 330 (2011). https://doi.org/10.1016/j.desal.2011.01.043

  12. R. K. Gupta and A. Nayak, Chem. Eng. J. 180, 81 (2012). https://doi.org/10.1016/j.cej.2011.11.006

    Article  CAS  Google Scholar 

  13. A. Hadi Abdullah, R. Mat, S. Somderam, A. Sh. Abd Aziz, and A. Mohamed, J. Ind. Eng. Chem. 65, 334 (2018). https://doi.org/10.1016/j.jiec.2018.05.003

    Article  CAS  Google Scholar 

  14. D. Gouvêa, S. V. Ushakov, and A. Navrotsky, Langmuir 30, 9091 (2014). https://doi.org/10.1021/la500743u

    Article  CAS  PubMed  Google Scholar 

  15. R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, Nanomicro Lett. 7, 97 (2015). https://doi.org/10.1007/s40820-014-0023-3

    Article  CAS  PubMed  Google Scholar 

  16. S. Xiong, L. Kong, Z. Zhong, and Y. Wang, AIChE J. 62, 3982 (2016). https://doi.org/10.1002/aic.15293

    Article  CAS  Google Scholar 

  17. Q. Tian, W. Wu, Sh. Yang, J. Liu, W. Yao, F. Ren, and Ch. Jiang, Nanoscale Res. Lett. 12, 221 (2017). https://doi.org/10.1186/s11671-017-2005-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. T. Sheela, Y. Arthoba Nayaka, R. Viswanatha, S. Basavanna, and T. G. Venkatesha Madhavi, Powder Technol. 217, 163 (2012). https://doi.org/10.1016/j.powtec.2011.10.023

    Article  CAS  Google Scholar 

  19. Sh. Mahdavi, A. Afkhami, and H. Merrikhpour, Clean Technol. Environ. Policy 17, 1645 (2015). https://doi.org/10.1007/s10098-015-0898-9

    Article  CAS  Google Scholar 

  20. X. Wang, W. Cai, Yongxing Lin, G. Wanga, and Ch. Liang, J. Mater. Chem. 20, 8582 (2010). https://doi.org/10.1039/C0JM01024C

    Article  CAS  Google Scholar 

  21. L. Wang, Ch. Han, M. Nadagouda, and D. D. Dionysiou, J. Hazard. Mater. 313, 283 (2016). https://doi.org/10.1016/j.jhazmat.2016.03.070

    Article  CAS  PubMed  Google Scholar 

  22. Y. Kikuchi, Q. Qian, M. Machida, and H. Tatsumoto, Carbon 44, 195 (2006). https://doi.org/10.1016/j.carbon.2005.07.040

    Article  CAS  Google Scholar 

  23. M. Breedon, M. J. S. Spencer, and I. Yarovsky, Surf. Sci. 603, 3389 (2009). https://doi.org/10.1016/j.susc.2009.09.032

    Article  CAS  Google Scholar 

  24. A. Al-Sunaidi and S. Goumri-Said, Chem. Phys. Lett. 507, 111 (2011). https://doi.org/10.1016/j.cplett.2011.03.041

    Article  CAS  Google Scholar 

  25. K. Hermann, P. S. Bagus, and C. J. Nelin, Phys. Rev. B 35, 9467 (1987). https://doi.org/10.1103/physrevb.35.9467

    Article  CAS  Google Scholar 

  26. H. Chen, J. Ding, N. Yuan, X. Wang, Ch. Chen, and D. Weng, Prog. Nat. Sci. Mater. 20, 30 (2010). https://doi.org/10.1016/S1002-0071(12)60003-3

    Article  CAS  Google Scholar 

  27. J. Beheshtian, A. A. Peyghan, and Z. Bagheri, Appl. Surf. Sci. 258, 8171 (2012). https://doi.org/10.1016/j.apsusc.2012.05.016

    Article  CAS  Google Scholar 

  28. B. Wang, Sh. Nagase, J. Zhao, and G. Wang, J. Phys. Chem. C 111, 4956 (2007). https://doi.org/10.1021/jp066548v

    Article  CAS  Google Scholar 

  29. M. Chen, T. P. Straatsma, Z. Fang, and D. A. Dixon, J. Phys. Chem. C 120, 20400 (2016). https://doi.org/10.1021/acs.jpcc.6b06730

    Article  CAS  Google Scholar 

  30. https://www.cp2k.org/.

  31. S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).

    Article  CAS  Google Scholar 

  32. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  33. G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 133, 9901 (2000). https://doi.org/10.1063/1.1329672

    Article  Google Scholar 

  34. P. L. Brown and Ch. Ekberg, Hydrolysis of Metal Ions (Wiley, New York, 2016).

    Book  Google Scholar 

  35. B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, Dalton Trans. 21, 2832 (2008). https://doi.org/10.1039/b801115j

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was funded by the Vietnam Ministry of Education and Training, grant no. B2018-SPH-47.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nguyen Thi Thu Ha or Nguyen Ngoc Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen Thi Thu Ha, Cam, L.M., Lan, N.H. et al. A Theoretical Study on the Interaction between Zinc Oxide Cluster (ZnO)3 and Mercury Ion (HgOH+). Russ. J. Phys. Chem. 94, 1199–1207 (2020). https://doi.org/10.1134/S0036024420060126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420060126

Keywords:

Navigation