Skip to main content
Log in

Novel Horizon: Smart TiO2/Sn(IV)SbP Nanocomposite with Enhanced Electrochemical and Photocatalytic Properties

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In the present research work, sol-gel derived smart nanocomposite of tin antimonophosphate mixed with different concentration of TiO2 (0–40%) has been synthesized and further characterized through XRD, SEM, EDS, and HRTEM. The aim of this study is to relate the electrical conductivity dependence behavior with the different doping concentration of TiO2 (0–40%) in the composite. For this, ion exchange capacity (IEC) has been selected as a preliminary criterion for the measurement of other electrochemical properties like; membrane potential, transport number and permselectivity. The composite with 20% TiO2 in tin antimonophosphate possesses a maximum value, i.e. 0.97 meq/g for IEC, and has been further studied as a case for the material characterisation. Membrane potential, transport number, permselectivity values for the nanocomposite membrane have been found to be better than pristine membrane, for both monovalent and bivalent ions. The composite with 20% TiO2 in tin antimonophosphate further used a photocatalyst for the degradation MB dye. It shows 97% removal efficiency with apparent rate constant of 0.01314 min–1. The photocatalytic degradation of MB follows pseudo-first order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. X. L. Wang, M. Wang, Y. X. Jia, et al., Electrochim. Acta 174, 1113 (2015). https://doi.org/10.1016/j.electacta.2015.06.115

    Article  CAS  Google Scholar 

  2. M. Wang, X. L. Wang, Y. X. Jia, et al., Desal. 351, 163 (2014). https://doi.org/10.1016/j.desal.2014.07.039

    Article  CAS  Google Scholar 

  3. G. Pozniak and W. Trochimczuk, Die Angew. Makromol. Chem. 127, 171 (1984). https://doi.org/10.1002/apmc.1984.051270115

    Article  CAS  Google Scholar 

  4. Y. Mizutani, J. Membr. Sci. 49, 121 (1990). https://doi.org/10.1016/S0376-7388(00)80784-X

    Article  CAS  Google Scholar 

  5. S. S. Madaeni, S. Amirinejad, and M. Amirinejad, J. Membr. Sci. 380, 132 (2011). https://doi.org/10.1016/j.memsci.2011.06.038

    Article  CAS  Google Scholar 

  6. H. Beydaghi, M. Javanbakht, and A. Badiei, J. Nanostruct. Chem. 4, 97 (2014). https://doi.org/10.1007/s40097-014-0097-y

    Article  Google Scholar 

  7. Y. Song, X. Cao, Q. Liang, et al., Solid State Ion. 258, 92 (2014). https://doi.org/10.1016/j.ssi.2014.02.009

    Article  CAS  Google Scholar 

  8. A. Rahman and R. Jayaganthan, Russ. J. Inorg. Chem. 64, 946 (2019). https://doi.org/10.1134/S0036023619070131

    Article  CAS  Google Scholar 

  9. M. N. Rashed, Organic Pollutants—Monitoring, Risk and Treatment (InTech, Rijeka, Croatia, 2013).

    Book  Google Scholar 

  10. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photoch. Photobio. C 1, 1 (2000). https://doi.org/10.1016/S1389-5567(00)00002-2

    Article  CAS  Google Scholar 

  11. D. A. Zherebtsov, S. A. Kulikovskikh, V. V. Viktorov, et al., Russ. J. Inorg. Chem. 64, 165 (2019). https://doi.org/10.1134/S0036023619020220

    Article  CAS  Google Scholar 

  12. S. Ahmed, M. G. Rasul, R. Brown, et al., J. Eviron. Manage. 92, 311 (2011). https://doi.org/10.1016/j.jenvman.2010.08.028

    Article  CAS  Google Scholar 

  13. M. Yadav, A. Yadav, R. Fernandes, et al., J. Environ. Manage. 203, 364 (2017). https://doi.org/10.1016/j.jenvman.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  14. S. Zhu, Y. Dong, X. Xia, et al., RSC Adv. 6, 23809 (2016). https://doi.org/10.1039/C5RA24164B

    Article  CAS  Google Scholar 

  15. M. Dahl, Y. Liu, and Y. Yin, Chem. Rev. 114, 9853 (2014). https://doi.org/10.1021/cr400634p

    Article  CAS  PubMed  Google Scholar 

  16. J. Chen, X. Wang, Y. Li, et al., Chem. Eng. Technol. 40, 1347 (2017). https://doi.org/10.1002/ceat.201600671

    Article  CAS  Google Scholar 

  17. X. Shang, M. Zhang, X. Wang, et al., J. Exp. Nanosci. 9, 749 (2014). https://doi.org/10.1080/17458080.2012.713127

    Article  CAS  Google Scholar 

  18. H. Kaur, S. Kumar, N. K. Verma, et al., J. Mater. Sci. Mater. Electron. 29, 16120 (2018). https://doi.org/10.1007/s10854-018-9701-0

    Article  CAS  Google Scholar 

  19. S. Kaushal, G. Singh, P. Singh, et al., RSC Adv.7, 12561 (2017). https://doi.org/10.1039/C6RA27318A

    Article  CAS  Google Scholar 

  20. C. E. Powell and G. G. Qiao, J. Membr. Sci. 279, 1 (2006). https://doi.org/10.1016/j.memsci.2005.12.062

    Article  CAS  Google Scholar 

  21. G. M. Geise, H. J. Cassady, D. R. Paul, et al., Phys. Chem. Chem. Phys. 16, 21673 (2014). https://doi.org/10.1039/c4cp03076a

    Article  CAS  PubMed  Google Scholar 

  22. V. K. Shahi, S. K. Thampy, and R. Rangarajan, J. Membr. Sci. 158, 77 (1999). https://doi.org/10.1016/S0376-7388(99)00029-0

    Article  CAS  Google Scholar 

  23. J. Kerres, W. Cui, R. Disson, et al., J. Membr. Sci. 139, 211 (1998). https://doi.org/10.1016/S0376-7388(97)00253-6

    Article  CAS  Google Scholar 

  24. R. K. Nagarale, G. S. Gohil, V. K. Shahi, et al., Colloids. Surf. A 251, 133 (2004). https://doi.org/10.1016/j.colsurfa.2004.09.028

    Article  CAS  Google Scholar 

  25. A. Elattar, A. Elmidaoui, N. Pismenskaia, et al., J. Membr. Sci. 143, 249 (1998). https://doi.org/10.1016/S0376-7388(98)00013-1

    Article  CAS  Google Scholar 

  26. X. Li, Z. Wang, H. Lu, et al., J. Membr. Sci. 254, 147 (2005). https://doi.org/10.1016/j.memsci.2004.12.051

    Article  CAS  Google Scholar 

  27. D. R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC Taylor & Francis Group, Florida, USA, 2006).

    Google Scholar 

  28. S. M. Hosseini, P. Koranian, A. Gholami, et al., Desal. 329, 62 (2013). https://doi.org/10.1016/j.desal.2013.09.007

    Article  CAS  Google Scholar 

  29. R. Jenkins, and R. L. Snyder, Introduction to X-ray Powder Diffractometry (Wiley, New York, 1996).

    Book  Google Scholar 

  30. A. Molea, V. Popescu, N. A. Rowson, et al., Powder Technol. 253, 22 (2014). https://doi.org/10.1016/j.powtec.2013.10.040

    Article  CAS  Google Scholar 

  31. G. S. Gohil, V. K. Shahi, and R. Rangarajan, J. Membr. Sci. 240, 211 (2004). https://doi.org/10.1016/j.memsci.2004.04.022

    Article  CAS  Google Scholar 

  32. S. A. K. Leghari, S. Sajjad, F. Chen, et al., Chem. Eng. J. 166, 906 (2011). https://doi.org/10.1016/j.cej.2010.11.065

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab (India) for support and lab facilities. Authors also thankful to Director, Thapar University, Patiala, Punjab for the support.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumar.

Ethics declarations

The authors declare no conflict of interest.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushal, S., Kaur, H., Kumar, S. et al. Novel Horizon: Smart TiO2/Sn(IV)SbP Nanocomposite with Enhanced Electrochemical and Photocatalytic Properties. Russ. J. Inorg. Chem. 65, 616–625 (2020). https://doi.org/10.1134/S0036023620040087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620040087

Keywords:

Navigation