Skip to main content
Log in

Development of an Electrospun Scaffold for Retinal Tissue Engineering

  • MEDICAL POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Delivery of retinal progenitor cells (RPCs) for restoring injured or diseased retinal tissue using biodegradable scaffolds is a promising treatment for retinal diseases. Blend of three polymers; poly(ε-caprolactone) (PCL), poly(glycerol sebacate) (PGS), and poly(1,8-octanediol-co-citrate) (POC) was used to prepare a nanofibrous scaffold for retinal tissue engineering via electrospinning process. The PGS and POC were firstly synthesized through condensation polymerization. The combinations of PCL, PGS, and POC were then electrospun and optimized to prepare the nanofibrous scaffolds. Subsequently, hydrophilicity, degradability, and biocompatibility of the prepared scaffolds were evaluated. Morphological studies of the scaffolds showed nanofibers without any sings of beads. Tensile evaluations of the scaffolds confirmed that the prepared scaffolds could meet mechanical property requirements for retinal application. The incorporation of POC increased the hydrophilicity and degradation rate of the scaffolds. Also, in-vitro cell behavior assays revealed that human retinal pigment epithelium cells proliferated faster when the POC was added to the scaffold structure. The results suggest that the PGS/POC/PCL scaffold has the potential for retinal tissue engineering (TE) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. Margalit and S. R. Sadda, Artif. Organs 27, 963(2003).

    Article  Google Scholar 

  2. H. J. Klassen, T. F. Ng, Y. Kurimoto, I. Kirov, M. Shatos, P. Coffey, and M. J. Young, Invest. Ophthalmol. Visual Sci. 45, 4167 (2004).

    Article  Google Scholar 

  3. W. L. Neeley, S. Redenti, H. Klassen, S. Tao, T. Desai, M. J. Young, and R. Langer, Biomaterials 29, 418 (2008).

    Article  CAS  Google Scholar 

  4. S. Khalili, S. Nouri Khorasani, N. Saadatkish, and K. Khoshakhlagh, Polym. Sci., Ser. A 58, 399 (2016).

    Article  CAS  Google Scholar 

  5. M. R. Safran, H. Kim, and S. Zaffagnini, J. Am. Acad. Orthop. Surg. 16, 306 (2008).

    Article  Google Scholar 

  6. S. Khalili, S. Nouri Khorasani, S. M. Razavi, B. Hashemibeni, and A. Tamayol, Appl. Biochem. Biotechnol. 187, 1193 (2018).

    Article  Google Scholar 

  7. S. Khalili, S. Nouri Khorasani, M. Razavi, B. Hashemibeni, F. Heydari, and A. Tamayol, J. Biomed. Mater. Res., Part A 106, 370 (2018).

    CAS  Google Scholar 

  8. R. Vasita and D. S. Katti, Int. J. Nanomed. 1, 15 (2006).

    Article  CAS  Google Scholar 

  9. Y. Zhang, B. Su, J. Venugopal, S. Ramakrishna, and C. T. Lim, Int. J. Nanomed. 2, 623 (2007).

    CAS  Google Scholar 

  10. S. Kumbar, R. James, S. P. Nukavarapu, and C. T. Laurencin, Biomed. Mater. 3, 034002 (2008).

    Article  CAS  Google Scholar 

  11. E. Yuksel, J. Choo, M. Wettergreen, and M. Liebschner, Semin. Plast. Surg. 19, 261 (2005).

    Article  Google Scholar 

  12. S. Karbasi, S. Nouri Khorasani, S. Ebrahimi, S. Khalili, F. Fekrat, and D. Sadeghi, Adv. Biomed. Res. 5, 177 (2016).

    Article  Google Scholar 

  13. C. G. Jeong and S. J. Hollister, Biomaterials 31, 4304 (2010).

    Article  CAS  Google Scholar 

  14. A. Nadim, S. Nouri Khorasani, M. Kharaziha, and S. M. Davoodi, Mater. Sci. Eng. C 78, 47 (2017).

    Article  CAS  Google Scholar 

  15. M. Masoudi Rad, S. Nouri Khorasani, L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. R. Foroughi, M. Kharaziha, N. Saadatkish, and S. Ramakrishna, Mater. Sci. Eng., C 80, 75 (2017).

    Article  CAS  Google Scholar 

  16. N. Masoumi, B. L. Larson, N. Annabi, M. Kharaziha, B. Zamanian, K. S. Shapero, A. T. Cubberley, G. Camci-Unal, K. B. Manning, J. E. Mayer, Jr., and A. Khademhosseini, Adv. Healthcare Mater. 3, 929 (2014).

    Article  CAS  Google Scholar 

  17. S. Sant, D. Iyer, A. Gaharwar, A. Patel, and A. Khademhosseini, Acta Biomater. 9, 5963 (2013).

    Article  CAS  Google Scholar 

  18. J. Yao, S. L. Tao, and M. J. Young, Polymers 3, 899 (2011).

    Article  CAS  Google Scholar 

  19. A. Gaharwar, M. Nikkhah, S. Sant, and A. Khademhosseini, Biofabrication 7, 015001 (2015).

    Article  Google Scholar 

  20. Y. Kang, J. Yang, S. Khan, L. Anissian, and G. A. Ameer, J. Biomed. Mater. Res., Part A 77, 331 (2006).

    Google Scholar 

  21. Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, Nature Niotechnol. 20, 602 (2002).

    CAS  Google Scholar 

  22. C. L. Nijst, J. P. Bruggeman, J. M. Karp, L. Ferreira, A. Zumbuehl, C. J. Bettinger, and R. Langer, Biomacromolecules 8, 3067 (2007).

    Article  CAS  Google Scholar 

  23. J. Yang, A. R. Webb, S. J. Pickerill, G. Hageman, and G. A. Ameer, Biomaterials 27, 1889 (2006).

    Article  CAS  Google Scholar 

  24. Y. Guo, K. Liang, and Y. Ji, Eur. Polym. J. 110, 337 (2019).

    Article  CAS  Google Scholar 

  25. L. Vogt, L. R. Rivera, L. Liverani, A. Piegat, and M. El Fray, Mater. Sci. Eng. C 103, 109712 (2019).

    Article  Google Scholar 

  26. J. Yang, A. R. Webb, and G. A. Ameer, Adv. Mater. 16, 511 (2004).

    Article  CAS  Google Scholar 

  27. Y. Wang, Y. M. Kim, and R. Langer, J. Biomed. Mater. Res., Part A 66, 192 (2003).

    Google Scholar 

  28. R. Ravichandran, J. R. Venugopal, S. Sundarrajan, S. Mukherjee, and S. Ramakrishna, Tissue Eng., Part A 17, 1363 (2011).

    Article  CAS  Google Scholar 

  29. I. H. Jaafar, M. M. Ammar, S. S. Jedlicka, R. A. Pearson, and J. P. Coulter, J. Mater. Sci. 45, 2525 (2010).

    Article  CAS  Google Scholar 

  30. R. E. Neisiany, S. N. Khorasani, M. Naeimirad, J. K. Y. Lee, and S. Ramakrishna, Macromol. Mater. Eng. 302, 1600551 (2017).

    Article  Google Scholar 

  31. R. Esmaeely Neisiany, J. K. Y. Lee, S. Nouri Khorasani, R. Bagheri, and S. Ramakrishna, J. Ind. Eng. Chem. 59, 456 (2018).

  32. Y. Du, J. Ge, Y. Shao, P. X. Ma, X. Chen, and B. Lei, J. Mater. Chem. B 3, 2986 (2015).

    Article  CAS  Google Scholar 

  33. S. Salehi, M. Fathi, S. H. Javanmard, T. Bahners, J. S. Gutmann, S. Ergün, K. P. Steuhl, and T. A. Fuchsluger, Macromol. Mater. Eng. 299, 455 (2014).

    Article  CAS  Google Scholar 

  34. Z. Li and C. Wang, One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers (Springer–Verlag, Berlin; Heidelberg, 2013).

    Book  Google Scholar 

  35. M. G. McKee, G. L. Wilkes, R. H. Colby, and T. E. Long, Macromolecules 37, 1760 (2004).

    Article  CAS  Google Scholar 

  36. A. Anindyajati, Jurnal Teknosains 8, 168 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saied Nouri Khorasani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatemeh Jafari, Khorasani, S.N., Alihosseini, F. et al. Development of an Electrospun Scaffold for Retinal Tissue Engineering. Polym. Sci. Ser. B 62, 290–298 (2020). https://doi.org/10.1134/S1560090420030069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090420030069

Navigation