Skip to main content
Log in

Composites Based on Functionalized Polystyrene and Semiconductor Quantum Dots

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

A procedure for producing nanocomposites by bonding polystyrene to the terminal carboxyl group and quantum dots based on CdSe and ZnS has been developed. The terminal functional group has been introduced into the polymer by radical polymerization with reversible chain transfer using trithiocarbonate. The effect of the reaction conditions and structure of the reversible chain transfer agent on the content of quantum dots in the nanocomposite has been studied. It has been shown that quantum dots of the CdSe core type and the CdSe/ZnS core/shell type have different activity upon binding to the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. B. Vasiliev, S. G. Dorofeev, D. N. Dirin, D. A. Belov, and T. A. Kuznetsova, Mendeleev Commun. 14, 169 (2004).

    Article  Google Scholar 

  2. W. K. Bae, K. Char, H. Hur, and S. Lee, Chem. Mater. 20, 531 (2008).

    Article  CAS  Google Scholar 

  3. M. Grabolle, J. Ziegler, A. Merkulov, T. Nann, and U. Resch-Genger, Ann. N. Y. Acad. Sci. 1130, 235 (2008).

    Article  CAS  Google Scholar 

  4. S. Kim and M. G. Bawendi, J. Am. Chem. Soc. 125, 14652 (2003).

    Article  CAS  Google Scholar 

  5. B. C. Mei, K. Susumu, I. L. Medintz, and H. Mattoussi, Nat. Protoc. 4, 412 (2009).

    Article  CAS  Google Scholar 

  6. H. T. Uyeda, I. L. Medintz, J. K. Jaiswal, S. M. Simon, and H. Mattoussi, J. Am. Chem. Soc. 127, 3870 (2005).

    Article  CAS  Google Scholar 

  7. W. M. Kochemba, Chem. Mater. 24, 4459 (2012).

    Article  CAS  Google Scholar 

  8. A. M. Smith and S. Nie, J. Am. Chem. Soc. 130, 11278 (2008).

    Article  CAS  Google Scholar 

  9. Y. A. Wang, J. J. Li, H. Y. Chen, and X. G. Peng, J. Am. Chem. Soc. 124, 2293 (2002).

    Article  CAS  Google Scholar 

  10. F. Osaki, T. Kanamori, S. Sando, T. Sera, and Y. A. Aoyama, J. Am. Chem. Soc. 126, 6520 (2004).

    Article  CAS  Google Scholar 

  11. F. Boulmedais, P. Bauchat, M. J. Brienne, I. Arnal, F. Artzner, T. Gacoin, M. Dahan, and V. Marchi-Artzner, Langmuir 22, 9797 (2006).

    Article  CAS  Google Scholar 

  12. H. Skaff, K. Sill, and T. Emrick, J. Am. Chem. Soc. 126, 11322 (2004).

    Article  CAS  Google Scholar 

  13. J. Feng, S. Y. Ding, M. P. Tucker, M. E. Himmel, Y. H. Kim, S. B. Zhang, B. M. Keyes, and G. Rumbles, Appl. Phys. Lett. 86, 033108 (2005).

    Article  Google Scholar 

  14. Y. Wang, J. F. Wong, X. W. Teng, X. Z. Lin, and H. Yang, Nano Lett. 3, 1555 (2003).

    Article  CAS  Google Scholar 

  15. K. M. Krueger, A. M. Al-Somali, M. Mejia, and V. L. Colvin, Nanotecnology 18, 475709 (2007).

    Article  Google Scholar 

  16. H. Skaff and T. Emrick, Chem. Commun. 2003, 52 (2003).

    Article  Google Scholar 

  17. G. P. Mitchell, C. A. Mirkin, and R. L. Letsinger, J. Am. Chem. Soc. 121, 8122 (1999).

    Article  CAS  Google Scholar 

  18. D. J. Milliron, A. P. Alivisatos, C. Pitois, C. Edder, and J. M. J. Frechet, Adv. Mater. 15, 58 (2003).

    Article  CAS  Google Scholar 

  19. G. Carrot, D. Rutot-Houze, A. Pottier, P. Degee, J. Hilborn, and P. Dubois, Macromolecules 35, 8400 (2002).

    Article  CAS  Google Scholar 

  20. A. C. C. Esteves, L. Bombalski, T. Trindade, K. Matyjaszewski, and A. Barros-Timmons, Small 3, 1230 (2007).

    Article  CAS  Google Scholar 

  21. K. Sill and T. Emrick, Chem. Mater. 16, 1240 (2004).

    Article  CAS  Google Scholar 

  22. E. A. Litmanovich, M. Z. Bekanova, G. A. Shandryuk, E. V. Chernikova, and R. V. Talroze, Polymer 142, 1 (2018).

    Article  CAS  Google Scholar 

  23. H. Yin, Z. Cheng, J. Zhu, and X. Zhu, J. Macromol. Sci., Part A: Pure Appl. Chem. 44, 315 (2007).

    Article  CAS  Google Scholar 

  24. E. V. Chernikova, A. V. Tarasenko, E. S. Garina, and V. B. Golubev, Polym. Sci., Ser. A 50, 353 (2008).

    Article  Google Scholar 

  25. A. A. Ezhov, O. N. Karpov, A. S. Merekalov, S. S. Abramchuk, G. N. Bondarenko, and R. V. Talroze, J. Lumin. (2019). https://doi.org/10.1016/j.jlumin.2019.116992

  26. Ya. I. Derikov, I. Yu. Kutergina, G. A. Shandryuk, A. S. Merekalov, M. V. Gorkunov, S. S. Abramchuk, and A. A. Ezhov, Polym. Sci., Ser. A 56, 488 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18-73-00326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. I. Derikov.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derikov, Y.I., Shandryuk, G.A., Karpov, O.N. et al. Composites Based on Functionalized Polystyrene and Semiconductor Quantum Dots. Polym. Sci. Ser. B 62, 144–151 (2020). https://doi.org/10.1134/S1560090420020025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090420020025

Navigation