Skip to main content
Log in

The Effect of the End Segments on the Dynamics of a Polymer Melt: The Frequency Nature of the Effect and Possibility of Experimental Observation in the Free Induction Decay of Deuterons

  • THEORY AND SIMULATIONS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

It is shown that, in the melts of linear macromolecules, the effects of dynamic heterogeneity associated with the presence of end segments are not vanishingly small in the limit \(N \to \infty \), where \(N\) is the number of Kuhn segments in the macromolecule. The effect has a frequency nature, i.e., the division of the segments into “end” ones, more mobile in comparison with the “median” ones, mainly depends on the observation time. With the increase in the observation time, symmetrical growth of the “end” regions of the polymer chain occurs from both ends of the macromolecule which covers the entire macromolecule at times on the order of the terminal relaxation time. The effect generates nontrivial experimentally observed consequences. For example, the free induction decay of deuterons in monodisperse polymer melts of macromolecules should have an extended region with the exponential decay law \(g(t) \propto {{t}^{{ - \beta }}}\), where \(\beta = 1\) for the reptation model and \(\beta = {{(\alpha - 2)}^{{ - 1}}}\) for isotropic renormalized Rouse models: \(\alpha > 2\) is the exponent of the molecular weight dependence of the terminal relaxation time of macromolecules. At \(\alpha \leqslant 2\), the influence of the effects of dynamic heterogeneity on the shape of free induction decay is weaker, although it is observable at sufficient accuracy of the measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  2. Yu. Ya. Gotlib, A. A. Darinskii, and Yu. E. Svetlov, Physical Kinetics of Macromolecules (Khimiya, Leningrad, 1986) [in Russian].

    Google Scholar 

  3. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1989).

    Google Scholar 

  4. P. G. De Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979).

    Google Scholar 

  5. R. Kimmich and R. Bachus, Colloid Polym. Sci. 260, 911 (1982).

    Article  CAS  Google Scholar 

  6. T. W. M. Huirua, R. Wang, and P. T. Callaghan, Macromolecules 23, 1658 (1990).

    Article  CAS  Google Scholar 

  7. M. Doi, J. Polym. Sci., Polym. Lett. Ed. 19, 265 (1981).

    Article  CAS  Google Scholar 

  8. R. Kimmich and M. Köpf, “Contour-Length Fluctuation of Polymers: NMR Experiments and Statistical Physics,” in Progress in Colloid and Polymer Science, Ed. by H.-G. Kilian and G. Lagaly (Steinkopff-Verlag; Springer-Verlag, Darmstadt; New York, 1989), Vol. 80, p. 8.

  9. R. Folland and A. Charlesby, J. Polym. Sci., Polym. Lett. Ed. 16, 339 (1978).

    Article  CAS  Google Scholar 

  10. W. L. F. Gölz and H. G. Zachmann, Macromol. Chem. Phys. 176, 2721 (1975).

    Article  Google Scholar 

  11. G. C. Berry and T. G. Fox, Adv. Polym. Sci. 5, 261 (1968).

    Article  Google Scholar 

  12. M. L. Trutschel, A. Mordvinkin, F. Furtado, L. Willner, and K. Saalwächter, Macromolecules 51, 4108 (2018).

    Article  CAS  Google Scholar 

  13. D. A. Markelov, M. Dolgushev, and E. Lahderanta, Annu. Rep. NMR Spectrosc. 91, 1 (2017).

    Article  CAS  Google Scholar 

  14. M. Dolgushev, D. A. Markelov, F. Fürstenberg, and T. Guérin, Phys. Rev. E 94, 012502 (2016).

    Article  CAS  Google Scholar 

  15. D. A. Markelov, F. Fürstenberg, and M. Dolgushev, Polymer 144, 65 (2018).

    Article  CAS  Google Scholar 

  16. M. Bixon and R. Zwanzig, J. Chem. Phys. 68, 1896 (1978).

    Article  CAS  Google Scholar 

  17. Yu. Ya. Gotlib and Yu. E. Svetlov, Polym. Sci., Ser. A 21, 1531 (1979).

    CAS  Google Scholar 

  18. M. G. Bawendi and K. F. Freed, J. Chem. Phys. 83, 2491 (1985).

    Article  CAS  Google Scholar 

  19. J. B. Lagowski, J. Noolandi, and B. Nickel, J. Chem. Phys. 95, 1266 (1991).

    Article  CAS  Google Scholar 

  20. R. G. Winkler, P. Reineker, and L. Harnau, J. Chem. Phys. 101, 8119 (1994).

    Article  CAS  Google Scholar 

  21. B. Y. Ha and D. Thirumalai, J. Chem. Phys. 103, 9408 (1995).

    Article  CAS  Google Scholar 

  22. R. Kimmich and N. Fatkullin, Adv. Polym. Sci. 170, 1 (2004).

    CAS  Google Scholar 

  23. M. A. Krutyeva, N. F. Fatkullin, and R. Kimmich, Polym. Sci., Ser. A 47, 1022 (2005).

    Google Scholar 

  24. N. F. Fatkullin, T. M. Shakirov, and N. A. Balakirev, Polym. Sci., Ser. A 52, 72 (2010).

    Article  Google Scholar 

  25. K. S. Schweizer, J. Chem. Phys. 91, 5802 (1989).

    Article  CAS  Google Scholar 

  26. N. Fatkullin, A. Gubaidullin, C. Mattea, and S. Stapf, J. Chem. Phys. 137, 224907 (2012).

    Article  CAS  Google Scholar 

  27. R. Kimmich and N. Fatkullin, Prog. Nucl. Magn. Reson. Spectrosc. 101, 18 (2017).

    Article  CAS  Google Scholar 

  28. N. Fatkullin, S. Stapf, M. Hofmann, R. Meier, and E. A. Rössler, J. Non-Cryst. Solids 407, 309 (2015).

    Article  CAS  Google Scholar 

  29. R. Kimmich, NMR: Tomography, Diffusometry, Relaxometry (Springer Science and Business Media, Berlin; Heidelberg, 2012).

    Google Scholar 

  30. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Fizmatlit, Moscow, 2003), Vol. 1.

    Google Scholar 

  31. T. N. Khazanovich, Vysokomol. Soedin. 5, 112 (1963).

    CAS  Google Scholar 

  32. N. F. Fatkullin, T. Körber, and E. A. Rössler, Polymer 142, 310 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Fatkullin.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrovskaya, I.K., Fatkullin, N.F. The Effect of the End Segments on the Dynamics of a Polymer Melt: The Frequency Nature of the Effect and Possibility of Experimental Observation in the Free Induction Decay of Deuterons. Polym. Sci. Ser. A 62, 132–139 (2020). https://doi.org/10.1134/S0965545X20020030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20020030

Navigation